Novia, Suarni (2024) APLIKASI TEORI KONTROL OPTIMAL MEMINIMALKAN JUMLAH INDIVIDU YANG TERINFEKSI PADA PENYAKIT TUBERKULOSIS. S1 thesis, Universitas Andalas.
Text (Cover dan Abstrak)
Cover dan Abstrak.pdf - Published Version Download (1MB) |
|
Text (Bab 1 Pendahuluan)
Bab 1.pdf - Published Version Download (137kB) |
|
Text (Bab 4 Penutup)
Bab 4.pdf - Published Version Download (196kB) |
|
Text (Daftar Pustaka)
Dapus.pdf - Published Version Download (109kB) |
|
Text (Skripsi Full Text)
Full Text.pdf - Published Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Tuberculosis is an infectious disease that causes the second most deaths after corona virus disease 2019 (COVID-19). This research uses the SEIT (Sus�ceptible, Exposed, Infectious, Treated) model by analyzing the stability of the equilibrium point. This research also seeks optimal control of the spread of tuberculosis, one of the causes being exogenous reinfection, adding isolation as a controlling variable. This research looks for the stability of the equilibrium point and determines the level of isolation optimal that satisfies the SEIT dynamic model to minimize the number individuals infected with tuberculosis using the principle Pontryagin minimum. In this research, numerical simula�tions were carried out using the 4th order Runge-Kutta method with the help of MATLAB software to observe the dynamics of the SEIT population over time.
Item Type: | Thesis (S1) |
---|---|
Supervisors: | Dr. Ahmad Iqbal Baqi |
Uncontrolled Keywords: | Tuberculosis, SEIT Model, Equilibrium Point Stability Analysis, Optimal Control, Runge-Kutta Method, Pontryagin’s Minimum Princip. |
Subjects: | Q Science > QA Mathematics |
Divisions: | Fakultas Matematika dan Ilmu Pengetahuan Alam > S1 Matematika |
Depositing User: | s1 matematika matematika |
Date Deposited: | 31 Oct 2024 07:27 |
Last Modified: | 31 Oct 2024 07:27 |
URI: | http://scholar.unand.ac.id/id/eprint/480900 |
Actions (login required)
View Item |