
TUGAS AKHIR

PENGARUH PENAMBAHAN FRAKSI VOLUME PADA KOMPOSIT MATRIKS EPOXY DAN NANOPARTIKEL TITANIUM DIOKSIDA (TiO₂) METODE OPEN MOLDING TERHADAP SIFAT FISIK DAN MEKANIK MATERIAL

Diajukan Sebagai Salah Satu Syarat Untuk Menyelesaikan Pendidikan Tahap Sarjana

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS ANDALAS PADANG

KEMENTRIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI, FAKULTAS TEKNIK, UNIVERSITAAS ANDALAS

JURUSAN TEKNIK MESIN

Kampus Limau Manis, PADANG 25163 Telp. 0751-72497 Fax. 0751-72566

PENETAPAN TUGAS AKHIR

Tugas Akhir ini sebagai salah satu syarat untuk menyelesaikan pendidikan Sarjana Teknik pada Jurusan Teknik Mesin Fakultas Teknik Universitas Andalas diberikan kepada :

Nama : Rahmat Alfin Nur

Nomor BP : 1510912076

Dosen Pembimbing I : Dr. Eng. Ilhamdi, M.Eng

Dosen Pembimbing II : Dony Hidayat, M.T (Pembimbing LAPAN)

Jangka Waktu Penyelesaian : ± 6 Bulan

Judul Tugas Akhir : Pengaruh Penambahan Fraksi Volume Pada

Komposit Matriks *Epoxy* Dan Nanopartikel

Titanium Dioksida (TiO2) Metode Open Molding

Terhadap Sifat Fisik Dan Mekanik Material

Uraian Tugas Akhir

- : 1. Studi Literatur
- 2. Pemilihan Metoda Penelitian
- 3. Melakukan Pengujian Spesimen
- 4. Analisa Hasil Pengujian
- 5. Kesimpulan dan Saran
- 6. Penulisan Laporan

KEDJAJAAN

Padang, Februari 2021

Pembimbing Utama

Dr. Eng. Ilhamdi, M.Eng NIP. 19820323 200604 1 004

LEMBAR PENGESAHAN

PENGARUH PENAMBAHAN FRAKSI VOLUME PADA KOMPOSIT MATRIKS *EPOXY*DAN NANOPARTIKEL TITANIUM DIOKSIDA (TiO₂) METODE *OPEN MOLDING*TERHADAP SIFAT FISIK DAN MEKANIK MATERIAL

Oleh:

RAHMAT ALFIN NUR

No. BP: 1510912076

Tugas Akhir ini diajukan untuk menyelesaikan Program Sarjana (S1) Teknik Mesin di Universitas Andalas

> Padang, Februari 2021 Menyetujui, Pembimbing Utama

<u>Dr. Eng Ilhamdi, M.Eng</u> NIP. 19820323 200604 1 004

Mengetahui,

Ketua Jurusan Teknik Mesin

Ketua Prodi S1 Teknik Mesin

Devi Chandra Ph.D

NIP. 19720720 200604 1 002

Iskandar R. M.T.

NIP. 19700709 199512 1 001

SURAT PERNYATAAN BEBAS PLAGIAT

Saya yang bertanda tangan di bawah ini,

Nama

: Rahmat Alfin Nur

NBP

: 1510912076

Fakultas/Jurusan

: Teknik / Teknik Mesin

Dengan ini menyatakan bahwa Tugas Akhir saya dengan judul:

"Pengaruh Penambahan Fraksi Volume Pada Komposit Matriks *Epoxy* Dan Nanopartikel Titanium Dioksida (TiO₂) Metode *Open Molding* Terhadap Sifat Fisik dan Mekanik Material"

Benar bebas dari plagiat dan apabila pernyataan ini terbukti tidak benar maka saya bersedia menerima sanksi sesuai dengan ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat untuk digunakan sebagaimana mestinya.

Mengetahui,

Pembimbing Utama Tugas Akhir

Dr. Eng Ilhamdi, M.Eng

NIP. 198203232006041004

Padang, 29 Desember 2020 Yang membuat pernyataan,

DE34AHF5705

Rahmat Alfin Nur NIM, 1510912076

ABSTRAK

Rahmat Alfin Nur^a, Ilhamdi^a, Dony Hidayat^b,

^aJurusan Teknik Mesin, Fakultas Teknik, Universitas Andalas, Kampus Limau Manis, Padang 25163 ^bPusat Teknologi Penerbangan, Pustekbang – LAPAN Rumpin, Bogor 16350

Nanokomposit merupakan proses penggabungan dua atau lebih material antara matriks dengan perkuatan (reinforced) serbuk nanopartikel untuk membentuk material baru yang lebih bermanfaat dalam industri manufaktur maupun rekayasa material. Nanokomposit berbasis polimer memiliki banyak keunggulan seperti dapat menghasilkan material komposit yang ringan, kuat, ramah lingkungan, serta ekonomis. Dalam penelitian ini, komposit epoxy dan titanium dioksida (TiO₂), diproduksi dalam cetakan terbuka menggunakan panel cetakan. Metode ini juga dikenal sebagai open molding process. Setelah komposit kering, panel komposit dipotong sesuai dengan standar ASTM of Rigid Plastics untuk spesimen uji tarik, uji tekan, uji lentur dan uji geser. Hasil penelitian menunjukan bahwa penambahan %vol TiO₂ terhadap komposit meningkatkan nilai densitas dan porositas, sedangkan pada mechanical properties komposit EP+TiO₂ variasi fraksi volume TiO₂ 0%, 4% dan 8% masing-masing untuk kekuatan tarik 25,67 MPa, 27,83 MPa, 20,51 MPa. Kekuatan tekan 61,45 MPa, 57,57 MPa, 51,94 MPa. Kekuatan lentur 43,05 N, 29,62 N, 31,38 N. Kekuatan geser 14,43 MPa, 13,06 MPa, 7,30 MPa. Hasil tersebut menunjukan sifat mekanik mengalami penurunan kekuatan seiring bertambahnya kandungan TiO₂ di dalam komposit. Hal lain juga dipengaruhi oleh tingkat homogenitas campuran, terdapatnya void, porositas, serta aglomerasi partikel didalam komposit.

Kata kunci: Nanokomposit, TiO₂, Open Molding, Mechanical properties

KEDJAJAAN

KATA PENGANTAR

Puji beserta syukur kami ucapkan kepada Allah SWT yang telah memberikan segala rahmat serta karunia-Nya, sehingga penulis dapat menyelesaikan Tugas Akhir di Jurusan Teknik Mesin Fakultas Teknik Universitas Andalas.

Pelaksanaan dan penyusunan tugas akhir ini tidak mungkin terlaksana tanpa bantuan dan dukungan dari berbagai pihak. Oleh karena itu, penulis ingin menyampaikan terima kasih kepada:

- 1. Kedua orang tua kami yang telah memberi semangat, motivasi dan do'a nya untuk kami.
- 2. Bapak Dr.Eng.Ilhamdi, M.Eng sebagai dosen pembimbing yang telah memberikan bimbingan, perhatian, pengarahan, dan semangat dalam menyelesaikan tugas akhir.
- 3. Bapak Dony Hidayat, M.T, Bapak Afid Nugroho, M.Eng sebagai pendamping pembimbing dari LAPAN yang telah memberikan bimbingan, perhatian, pengarahan, dan semangat dalam menyelesaikan tugas akhir.
- 4. Rekan-rekan tim tugas akhir dan Composite Project atas kebersamaan, motivasi, dan kerjasama dalam menyelesaikan tugas akhir ini.
- 5. Seluruh staff Laboratorium Aerostruktur Pustekbang yang telah membantu dalam pengujian dan pengambilan data.
- 6. Seluruh staf pengajar dan karyawan di Jurusan Teknik Mesin Fakultas Teknik Universitas Andalas.
- 7. Teman-teman seperjuangan Teknik Mesin Angkatan 2015 "M-28" dan semua mahasiswa jurusan teknik mesin FT-UA.
- 8. Semua pihak yang telah banyak membantu dalam menyelesaikan Tugas Akhir ini baik secara langsung maupun tidak langsung yang tidak dapat di sebutkan namanya satu persatu.

Penulis berdoa semoga segala bantuan dan dukungan yang telah diberikan mendapat balasan pahala oleh Allah Subhanahu wa Ta'ala, serta kesuksesan selalu diberikan-Nya kepada kita. Penulis menyadari bahwa tugas akhir ini tidak luput dari kekurangan. Untuk itu penulis sangat mengharapkan kritik dan saran yang membangun. Semoga Tugas Akhir ini dapat memberikan manfaat bagi kita semua, terutama bagi penulis dan lingkungan Jurusan Teknik Mesin Fakultas Teknik Universitas Andalas, Aamiin

Padang, 12 April 2020

Penulis

DAFTAR ISI

LEMBAR PENETAPAN	ii
LEMBAR PENGESAHAN	iii
ABSTRAK	iv
KATA PENGANTAR	v
DAFTAR ISI	vii
DAFTAR GAMBAR	
DAFTAR TABEL UNIVERSITAS ANDALAS	
DAFTAR SIMB <mark>OL</mark>	
BAB I PENDA <mark>HULUAN</mark>	
1.1 Latar Belakang	1
1.2 Tujuan	
1.3 Manfaat	3
1.4 Batasan Masalah	3
1.5 Sistematika Penulisan	
BAB II TINJAUAN PUST <mark>AKA</mark>	
2.1 Tinjauan Komposit	
2.1.1 Pengertian komposit	
2.1.2 Unsur Penyusun Komposit	5
2.1.3 Klasifikasi komposit ^{K, E, D, J, A, J, A, A, M}	6
2.2 Tinjauan Tentang Polimer	10
2.2.1 Pengertian Material Polimer	10
2.2.2 Klasifikasi Material Polimer	10
2.2.3 Polimer <i>Epoxy</i> Resin	11
2.3 Tinjauan <i>Titanium Dioxide</i> (TiO ₂)	12
2.3.1 Titanium Dioksida	12
2.3.2 Struktur Kristal TiO ₂	13
2.4 Karakteristik Material Komposit	14
2.4.1 Densitas dan Porositas	14
2.4.2 Sifat Mekanik Komposit	15

2.5 Tinjauan Penelitian Sebelumnya	16
BAB III METODOLOGI	18
3.1 Skema / Diagram Alir Penelitian	19
3.2 Peralatan dan Bahan	20
3.2.1 Peralatan Penelitian	22
3.2.2 Bahan	23
3.3 Proses Pembuatan Spesimen	24
3.4 Penyiapan Spesimen Uji	25
3.4.1 Spesimen Uji Densitas	
3.4.2 Spesimen Uji Tarik	26
3.4.2 Spesimen Uji Tarik	27
5.4.4 Spesimen Off Lentur	
3.4.5 Spesimen Uji Geser	28
3.5 Pengujian Komposit	28
3.5.1 Pengukuran Densitas	28
3.5.2 Pengujian Tarik (Tensile Strength Test)	29
3.5.3 Pengujian Tekan (Compressive Test)	30
3.5.4 Pengujian Lentur (Three point bending Test)	31
3.5.4 Pengujian Geser (Shear Strength Test)	32
BAB IV HASIL DAN PEMBAHASAN	34
4.1 Pengujian densitas dan porositas	34
4.2 Pengujian Tarik (<i>Tensile Test</i>)	36
4.2.1 Uji Spesimen Tarik <i>Epoxy</i> 100%: 0 % TiO ₂	36
4.2.2 Uji Spesimen Tarik <i>Epoxy</i> 96%: 4% TiO ₂	37
4.2.3 Uji Spesimen Tarik <i>Epoxy</i> 92% : 8 % TiO ₂	39
4.2.4 Perbandingan Hasil Uji Tarik Variasi % Volume Komposit	39
4.3 Pengujian Tekan (Compress Test)	40
4.3.1 Uji Spesimen Tekan <i>Epoxy</i> 100%: 0 % TiO ₂	40
4.3.2 Uji Spesimen Tekan Epoxy 96%: 4 % TiO2	40
4.3.3 Uji Spesimen tekan <i>Epoxy</i> 92%: 8 % TiO ₂	41
4.3.4 Perbandingan Hasil Uji Tekan Variasi %Volume Komposit	42
4.4 Pengujian kekuatan lentur (<i>Flexural Test</i>)	43

4.4.1 Uji Spesimen Lentur <i>Epoxy</i> 100% : 0 % TiO ₂	43
4.4.2 Uji Spesimen Lentur <i>Epoxy</i> 96%: 4 % TiO ₂	44
4.4.3 Uji Spesimen Lentur <i>Epoxy</i> 92% : 8 % TiO ₂	45
4.4.4 Perbandingan Hasil Uji Lentur Variasi % Volume Komposit	45
4.5 Pengujian Geser (Shear Test)	47
4.5.1 Uji Spesimen Geser 100% : 0 % TiO ₂	47
4.5.2 Uji Spesimen Geser <i>Epoxy</i> 96% : 4 % TiO ₂	48
4.5.3 Uji Spesimen Geser <i>Epoxy</i> 92% : 8 % TiO ₂	48
4.5.4 Perbandingan Rata-Rata Uji Geser Variasi % volume Komposit	49
BAB V PENUTUP	51
5.1 Kesimpulan	51
5.2 Saran	52
DAFTAR PUSTAKA	53
LAMPIRAN A FOTO SAMPEL KOMPOSIT EPOXY-TiO2	56
LAMPIRAN B PERHITUNGAN	64
LAMPIRAN C HASIL PENGUJIAN SAMPEL KOMPOSIT	68

KEDJAJAAN

DAFTAR GAMBAR

Gambar 2.1	Klasifikasi komposit berdasarkan penguatnya	6
Gambar 2.2	Komposit yang diperkuat partikel	7
Gambar 2.3	Komposit yang diperkuat serat (fiber)	8
Gambar 2.4	Susunan serat continous	8
Gambar 2.5	Susunan serat discontinous	8
Gambar 2.6	Susunan serat random	9
Gambar 2.7	Struktur laminates	9
Gambar 2.8	Struktur sandwich	
Gambar 2.9	Ikatan Polimer Epoxy ANDALAS.	12
Gambar 2.10	Representasi polyhedral dari (a) rutile (b) brookite (c) anata	13
Gambar 3.1	Diagram alir penelitian	18
Gambar 3.2	Timbangan digital	20
Gambar 3.3	Cetakan komposit akrilik	20
Gambar 3.4	Gelas ukur	21
Gambar 3.5	Digital Calipper	21
Gambar 3.6	Mikrometer Digital	21
Gambar 3.7	Densitometer	22
Gambar 3.8	Universal Testing Machine	22
	Band saw oscar	
Gambar 3.10	Mesin Amplas RK7866	23
Gambar 3.11	Serbuk Titanium Oksida AJAAN	23
Gambar 3.12	Resin dan hardener <i>epoxy</i>	24
	Wax	
Gambar 3.14	Cetakan	25
Gambar 3.15	Sampel uji densitas	26
	Dimensi spesimen uji tarik ASTM D-638	
Gambar 3.17	Dimensi Spesimen uji tekan ASTM D-795	27
	Dimensi spesimen uji lentur ASTM D-790	
	Dimensi spesimen uji geser ASTM D-5379	
	Uji Tarik	
	Uji Tekan	

Gambar 3.22	Uji Lentur	32
Gambar 3.23	Uji Geser	33
Gambar 4.1	Densitas Komposit	35
Gambar 4.2	Persentase porositas komposit	35
Gambar 4.3	Perbandingan rata-rata (a) tensile strength (b) tensile modulus	39
Gambar 4.4	Perbandingan rata-rata (a) compress strength (b) modulus	42
Gambar 4.5	Perbandingan rata-rata (a) flexural strength (b) modulus	46
Gambar 4.6	Perbandingan rata-rata (a) shear strength (b) shear modulus	50

DAFTAR TABEL

Tabel 2.1	Properties Epoxy Bisphenol Epichlorohydrin	12
Tabel 2.2	Karakteristik Nanopartikel TiO ₂	13
Tabel 4.1	Hasil rata-rata pengujian densitas dan porositas	36
Tabel 4.2	Hasil pengujian uji tarik EP 100% : 0% TiO_2	38
Tabel 4.3	Hasil pengujian uji tarik EP 96% : 4% TiO ₂	39
Tabel 4.4	Hasil pengujian uji tarik EP 92% : 8% TiO_2	40
Tabel 4.5	Hasil pengujian rata-rata uji tarik	40
Tabel 4.6	Hasil pengujian uji tekan EP 100% : 0% TiO ₂	42
Tabel 4.7	Hasil pengujian uji tekan EP 96%: 4% TiO ₂	43
Tabel 4.8	Hasil pengujian uji tekan EP 92%: 8% TiO ₂	43
Tabel 4.9	Hasi <mark>l penguji</mark> an rata-rata uji tekan	44
	Hasil pengujian uji lentur EP 100% : 0% TiO ₂	
Tabel 4.11	Hasil pengujian uji lentur EP 96% : 4% TiO ₂	47
Tabel 4.12	Hasi <mark>l pengu</mark> jian uji lentur EP 92%: 8% TiO ₂	47
Tabel 4.13	Hasil pengujian rata-rata uji lentur	48
	Hasil pengujian uji geser EP 100%: 0% TiO2	
Tabel 4.15	Hasil pengujian uji geser EP 96%: 4% TiO ₂	50
Tabel 4.16	Hasil pengujian uji geser EP 92%: 8% TiO ₂	51
Tabel 4.17	Hasil pengujian rata-rata uji geser	52
	VEDJAJAAN	

DAFTAR SIMBOL

Simbol	Arti	
$ ho_{ ext{aktual}}$	Densitas Aktual	cm/g^3
$oldsymbol{ ho}_{ ext{teoritis}}$	Densitas Teoritis	cm/g^3
$ ho_{ep}$	Densitas <i>Epoxy</i>	cm/g^3
V	volume	mm^3
Ø	Porositas	%
$\sigma_{ m tarik}$	Tegangan Tarik	MPa
P	Beban VERSITAS ANDALAS	N
A_0	Luas Penampang	mm^2
ε	regangan	mm/mm
ΔL	Pertambahan Panjang	mm
Lo	Jarak gag <mark>e</mark> length	mm
E	Modulus <mark>Ela</mark> stisitas	GPa
$\Delta\sigma$	Selisih Tegangan	MPa
$\Delta arepsilon$	Selisih Regangan	MPa
F^{CU}	Tegangan Tekan	MPa
P_{f}	Beban yang diberikan	N
W	Lebar Spesimen	mm
h	Tebal spesimen	mm
E^C	Modulus tekan	MPa
P_1	Beban pada $\in X_1$	N
P_2	Beban pada $\in X_2$	N
$\in X_1$	Aktual Strain terdekat ujung bawah	mm
$\in X_2$	Aktual Strain terdekat ujung bawah	MPa
σ_f	Tegangan Flexural	MPa
L	Panjang Support Span	mm
b	Lebar Spesimen Bending	mm
d	Tebal Spesimen Bending	mm
δ	Defleksi	mmH

BAB I

PENDAHULUAN

1.1 Latar Belakang

Logam merupakan material yang umum digunakan, Penggunaan material logam selalu menjadi pertimbangan, karena keberadaan logam di alam sangat terbatas maka untuk meningkatkan efisiensi terhadap suatu produk, para peneliti mulai melakukan pengembangan terhadap penggunaan material dari bahan serat maupun dari bahan pengisi (*filler*) yang dikenal dengan material komposit.

Penerapan material komposit sebagai material pengganti logam sudah sangat banyak diterapkan dan terutama sekali dalam dunia industri, seperti dalam industri otomotif, penerbangan, perkapalan, kontruksi, maupun industri. Material komposit sangat banyak diterapkan sebagai material pengganti logam dikarenakan material komposit memiliki sifat mekanik yang baik, massa jenis yang lebih ringan dibandingkan dengan material logam, tahan korosi sehingga umur pakai lebih panjang, dan juga ramah lingkungan [1].

Komposit adalah perpaduan dari dua bahan atau lebih untuk menghasilkan material baru yang lebih baik dari unsur penyusunnya. Perpaduan ini dapat menghasilkan sifat baru yang tidak ditemui pada masing-masing material penyusunnya [2]. Sedangkan untuk nanokomposit dibuat dengan menyisipkan nanopartikel (nano *filler*) ke dalam sebuah material makroskopik (matriks). *Filler* merupakan bahan pengisi untuk meningkatkan sifat mekanik komposit yang mendapatkan ukuran hingga skala nanometer, biasanya berupa serbuk.

Nanokomposit adalah struktur padat dengan dimensi berskala nanometer yang berulang pada jarak antar bentuk penyusun struktur yang berbeda. Nanokomposit berbasis polimer memiliki banyak keunggulan dibandingkan material komposit konvensional, makro maupun mikro. Keunggulannya antara lain meningkatkan sifat mekanik, sifat elektrik, konduktivitas termal, resistensi terhadap suhu tinggi. Semua keunggulan tergantung pada struktur dan sifat, serta komposisi penyusun material nanokomposit [3].

Tugas Akhir Pendahuluan

Bahan komposit berbasis polimer dengan nano *filler* yang digunakan didalam penelitian ini adalah titanium dioksida (TiO₂). TiO₂ merupakan salah satunya nanomaterial paling penting yang telah menarik perhatian besar karena sifatnya yang unik, yaitu; sifat mekanik, optik, dielektrik, katalitik, spektral, struktural, anti korosi serta biokompabilitas. TiO₂ sudah banyak digunakan dalam industri selama bertahun-tahun, jika dibandingkan dengan pengisi baru yang lebih baru yang juga dapat digunakan untuk memperkuat matriks [4]. Karena alasan ini, TiO₂ mudah ditemukan di pasaran dan dapat digunakan untuk menghasilkan sistem komposit untuk aplikasi langsung.

Untuk menunjang pembuatan material komposit dalam penelitian ini digunakan matriks *epoxy*. Pemilihan *epoxy* sebagai bahan dasar pembuatan bahan komposit adalah didasarkan pada kekuatan dan kekauan resin *epoxy* yang relatif lebih besar dibandingkan dengan polimer jenis lain (poliester, vinil ester). Matriks ini memiliki kelebihan diantaranya mempunyai kelebihan daya tahan kimia serta stabilitas dimensi yang baik, sifat-sifat listrik yang baik, mempunyai modulus tinggi, ketahanan thermal dan *chemical resistant*. Selain itu matriks ini memiliki ketahanan aus dan ketahanan kejut yang lebih baik apabila dibandingkan dengan matriks yang lain. Adapun kelemahan atau kekurangan dari resin *epoxy* yaitu matriks ini getas patahan, mudah tumbuh retakan, tidak liat, tidak ulet dan dari segi harganya yang lebih mahal dibandingkan dengan resin yang lain [4].

Pengembangan dan pembuatan komposit ini perlu ditunjang pembuktian studi mengenai sifat fisis dan mekanis yang baik agar bisa dimanfaatkan lebih luas khususnya sebagai pertimbangan material pembuatan *floating* pesawat amfibi. Perlu dilakukan karakterisasi sifat-sifat mekanis yakni pengujian tarik, pengujian tekan, pengujian geser untuk mendapatkan nilai-nilai mekanik terutama kekuatan dan ketahanan material komposit terhadap beban mekanik *tensile strength* (kekuatan tarik), *compress strength* (kekuatan tekan), *shear strength* (kekuatan geser), *flexural strength* (kekuatan lentur), modulus elastisitas, *poission ratio*, dan *failure mode* (mode kerusakan) yang terjadi pada material komposit.

Berdasarkan hal tersebut, penulis ingin meneliti material komposit dengan menggabungkan nanopartikel TiO₂ dengan matriks *epoxy*. Dari penelitian ini

Tugas Akhir Pendahuluan

diharapkan nantinya diperoleh karakteristik material komposit yang memiliki kekuatan serta modulus yang tinggi, ringan, tangguh sehingga dapat menjadi referensi maupun pengembangan dan pemanfaatan komposit *epoxy*-TiO₂ dibidang industri. Penelitian ini dilakukan di Pusat Teknologi Penerbangan / Pustekbang LAPAN, Bogor, Jawa Barat.

1.2 Tujuan

Mengetahui kekuatan dari komposit *epoxy*-TiO₂ serta mengetahui pengaruh fraksi volume TiO₂ terhadap karakteristik fisik dan mekanik komposit *epoxy*-TiO₂.

UNIVERSITAS ANDALAS

1.3 Manfaat

Manfaat dari penelitian ini adalah diperolehnya nilai kekuatan komposit serta mengetahui pengaruh variasi fraksi volume TiO₂ terhadap sifat fisik dan mekanik komposit. Dapat menjadi referensi maupun pengembangan lebih lanjut dari material komposit *epoxy*-TiO₂ di bidang industri.

1.4 Batasan Masalah

Dalam penelitian ini masalah yang diteliti dibatasi pada:

- 1. Filler yang digunakan adalah nanopartikel TiO₂ kisaran 30-50nm
- 2. Matriks yang digunakan *epoxy*
- 3. Metode yang digunakan yakni open molding process
- 4. Pengujian mekanik yang dilakukan adalah uji tarik, uji tekan, uji lentur, uji geser.
- 5. Variasi pembuatan komposit dengan penambahan persentase fraksi volume TiO₂ yakni 0 %, 4 %, 8 %.
- 6. Pengujian mekanik menggunakan UTM *Tensilon (Universal Testing Machine*) dan pengujian fisik menggunakan densitometer.
- 7. Penelitian ini tidak membahas tentang proses kimia suatu bahan / material.

Tugas Akhir Pendahuluan

1.5 Sistematika Penulisan

Sistematika penulisan tugas akhir secara garis besar terbagi atas lima bagian, yakni :

1. BAB I PENDAHULUAN

Menguraikan tentang latar belakang permasalahan, tujuan, manfaat, batasan permasalahan.

2. BAB II TINJAUAN PUSTAKA

Menjelaskan tentang teori-teori pendukung yang menjadi acuan dalam penelitian.

3. BAB III METODOLOGI ANDALAS

Menguraikan tentang peralatan, bahan dan prosedur kerja yang dilakukan dalam penelitian.

4. BAB IV HASIL DAN PEMBAHASAN

Menjelaskan tentang hasil pengujian beserta analisa dan pembahasan tentang hasil pengujian.

5. BAB V PENUTUP

Kesimpulan yang didapat dari hasil penelitian serta saran mengenai penelitian selanjutnya.

KEDJAJAAN

BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan Komposit

Pada bagian ini akan membahas mengenai pengertian material, unsur penyusun material komposit, klasifikasi komposit, dan faktor-faktor yang mempengaruhi sifat komposit.

2.1.1 Pengertian komposit

Komposit adalah suatu jenis bahan baru hasil rekayasa yang terdiri dari dua atau lebih bahan dimana sifat masing-masing bahan berbeda satu sama lainnya baik itu sifat kimia maupun fisikanya dan tetap terpisah dalam hasil akhir bahan tersebut [2]. Dalam pengertian lain komposit juga dapat didefinisikan sebagai suatu material yang terdiri dari campuran atau kombinasi dua atau lebih material baik secara mikro atau makro, dimana sifat material tersebut berbeda bentuk dan komposisi kimia dari zat asalnya [5].

2.1.2 Unsur Penyusun Komposit

Komposit tersusun dari berbagai unsur pembentuk, secara garis besar dapat dikelompokan menjadi 2 bagian utama, yaitu :

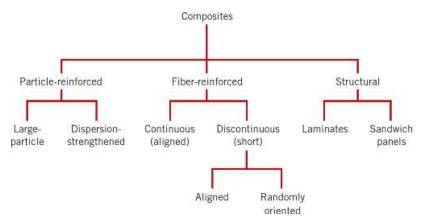
1. Matriks

Matriks merupakan komponen pembentuk dan pengikat dalam komposit. Matriks pada komposit berasal dari berbagai jenis material, seperti polimer, logam maupun keramik. Matriks merupakan fasa dalam komposit yang mempunyai fraksi volume terbesar (dominan). Syarat utama matriks adalah harus mampu meneruskan beban, sehingga serat / partikel dapat melekat pada matriks. Pada dasarnya, matriks dalam komposit berfungsi untuk:

a) Matriks mengikat *fibre*, menjaga agar tetap sejajar dengan arah tegangan. Beban yang diberikan terhadap komposit akan didistribusikan ke *fibre*, memungkinkan komposit untuk menerima *compression*, *flexural*, maupun *shear force*. Kemampuan komposit untuk menerima berbagai beban tergantung pada matriks sebagai media pentransfer beban dan juga efisiensi dari transfer beban juga berkaitan dengan kualitas ikatan antara matriks dan *fibres*.

b) Matriks juga melindungi *reinforcing filaments* dari kerusakan mekanik, misalnya abrasi dan juga kondisi lingkungan.

- c) Matriks mengisolasi serat atau serbuk sehingga masing-masing dapat bekerja secara terpisah. Hal ini dapat menghentikan atau memperlambat propagasi retak.
- d) Mendistribusikan sifat-sifat tertentu bagi komposit, yaitu: keuletan, kekakuan, ketangguhan dan ketahanan panas.


Untuk memilih matriks harus diperhatikan sifat-sifatnya, antara lain seperti tahan terhadap panas, tahan cuaca yang buruk dan tahan terhadap goncangan yang biasanya menjadi pertimbangan dalam pemilihan material matriks. Bahan polimer yang sering digunakan sebagai material matriks dalam komposit ada dua macam adalah termoplastik dan termoset.

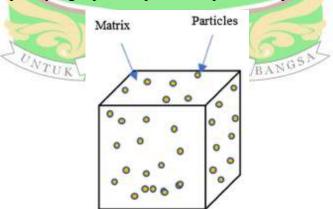
2. Reinforcement (penguat)

Reinforcement atau Filler atau Fiber, salah satu bagian utama dari komposit yang berperan untuk menahan beban yang diterima oleh material komposit sehingga tinggi rendahnya kekuatan komposit sangat tergantung dari penguat yang digunakan. Bahan penguat biasanya kaku dan tangguh. Bahan penguat yang umum digunakan adalah jenis partikel, serat-serat alam, serat karbon, serat gelas, keramik dsb.

2.1.3 Klasifikasi komposit

Berdasarkan unsur penguatnya *(reinforcement)*, komposit terbagi atas tiga macam. Adapun pembagian komposit berdasarkan penguatnya dapat dilihat pada Gambar 2.1.

Gambar 2.1 Klasifikasi komposit berdasarkan penguatnya [2].

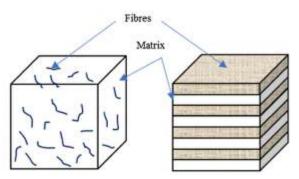

1. Particulate Reinforced Composite

Particulate Reinforced Composite merupakan komposit yang mengandung bahan penguat berbentuk partikel atau serbuk. Partikel sebagai bahan penguat sangat menentukan sifat mekanik dari komposit karena meneruskan beban yang didistribusikan oleh matrik. Faktor-faktor yang mempengaruhi sifat mekanik dari komposit partikel yakni ukuran, bentuk, dan material partikel.

Sifat-sifat komposit partikel dipengaruhi beberapa faktor, antara lain:

- 1. Ukuran dan bentuk partikel
- 2. Sifat-sifat atau bahan partikel
- 3. Rancangan partikel RSITAS ANDALAS
- 4. Rasio perbandingan antara partikel
- 5. Jenis matrik yang digunakan

Keunggulan komposit yang menggunakan partikel antara lain dapat meningkatkan sifat fisis material seperti kekuatan mekanis, dan modulus elastisitas, serta kekuatan komposit lebih homogen (merata). Dalam pembuatan komposit partikel sangat penting menghilangkan unsur udara dan air karena partikel yang berongga atau yang memiliki lubang udara kurang baik jika digunakan dalam campuran komposit. Adanya udara dan air pada sela-sela partikel dalam komposit dapat mengurangi kekuatan dan ketahanan retak material. Bentuk dari komposit yang diperkuat partikel dapat dilihat pada Gambar 2.2.



Gambar 2.2 Komposit yang diperkuat partikel [6].

2. Fiber Reinforced Composite

Komposit *fiber reinforced composite* merupakan komposit yang memiliki penguat berupa serat (*fiber*). Komposit ini terdiri dari dua komponen penyusun

yaitu matriks dan serat. Adapun gambar dari komposit yang diperkuat serat (*fiber*) dapat dilihat pada Gambar 2.3.

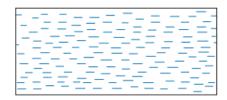
Gambar 2.3 Komposit yang diperkuat serat (fiber) [6].

Fiber reinforced composite terbagi menjadi 2 yaitu :

a) Continuous

Continuous mempunyai susunan serat panjang dan lurus, membentuk laminar diantara matriksnya. Kekurangan tipe ini adalah lemahnya kekuatan antar lapisan, hal ini dikarenakan kekuatan antar lapisan dipengaruhi oleh matriksnya. Adapun gambar dari susunan serat continuous dapat dilihat pada Gambar 2.4.

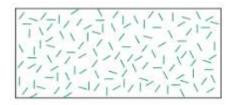
Gambar 2.4 Susunan serat continous [2].


KEDJAJAAN

b) Discontiunous

Penyusunan serat jenis ini terbagi 2 yaitu:

• Discontinous and aligned

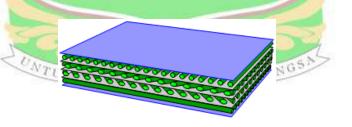

Susunan *discontinuous and aligned* memiliki kekuatan dan modulus lebih rendah dari pada serat *continuous*. Adapun gambar dari susunan serat *discontinuous* dapat dilihat pada Gambar 2.5.

Gambar 2.5 Susunan serat *discontinous* [2].

Discontinuous and randomly orientied
 Susunan serat random kemungkinan memiliki sifat mekanik dan fisik

yang sama dalam segala arah. Adapun gambar dari susunan serat *random* dapat dilihat pada Gambar 2.6.

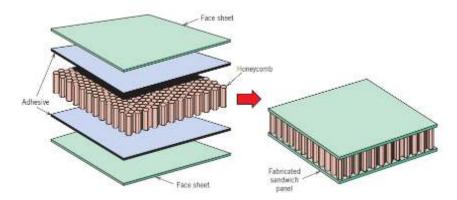
Gambar 2.6 Susunan serat random [2].


3. Structural Reinforced Composite ITAS ANDALAS

Komposit *structural reinforced composite* sekurang-kurangnya terdiri dari dua lapisan material yang berbeda dan digabung secara bersama-sama. *Structural reinforced composite* dibentuk dari lapisan-lapisan dengan berbagai macam arah penyusunan serat [5].

Lapisan tersebut yaitu:

a) Laminates


Merupakan jenis komposit yang terdiri dari dua lapis atau lebih yang digabung menjadi satu dan setiap lapisannya memiliki karakteristik sendiri. Struktur *laminate* ini dapat dilihat pada Gambar 2.7.

Gambar 2.7 Struktur *laminates* [5]

b) Sandwich Panels

Komposit *sandwich* merupakan komposit yang tersusun dari tiga lapisan yang terdiri dari *flat composite* dan atau *metal sheet* sebagai *skin* serta *core* dibagian tengahnya. Komposit *sandwich* dibuat dengan tujuan efisiensi berat yang optimal, namun mempunyai kekuatan yang tinggi. Sehingga untuk mendapatkan karakteristik tersebut, pada bagian tengah diantara kedua *skin* dipasang *core*. Struktur *sandwich panels* ini dapat dilihat pada Gambar 2.8.

Gambar 2.8 Struktur sandwich. [2].

2.2 Tinjauan Tentang Polimer

2.2.1 Pengertian Material Polimer

Polimer merupakan bahan yang sangat bermanfaat dalam dunia teknik, khususnya dalam bidang industri. Polimer sebagai bahan yang umum digunakan dalam bidang industri dapat digunakan dalam pembuatan produk secara langsung, misalnya pembuatan plastik, pipa PVC, body sepeda motor, body kapal, dan lain sebagainya. Polimer juga dapat digunakan sebagai material paduan terhadap material lainnya untuk membentuk material komposit. Penggunaan polimer sebagai material paduan dengan kekuatan dan ketangguhan yang sebanding, diperlukan perbaikan sifat mekanik polimer agar terbentuknya sifat mekanik yang lebih baik [7].

Polimer dapat diartikan sebagai kumpulan monomer-monomer yang saling memiliki ikatan satu sama lainnya. Polimer berasal dari bahasa Yunani yang terdiri dari dua kata yaitu *poly* dan *meros*. *Poly* berarti banyak dan *meros* berarti bagian- bagian atau unit-unit dasar [8]. Molekul monomer pada polimer bereaksi secara bersama-sama melalui proses kimiawi untuk membentuk suatu rantai linier atau jaringan tiga dimensi dari rantai polimer. Polimer juga dapat diartikan sebagai molekul raksasa yang tersusun dari ikatan kimia sederhana [9].

2.2.2 Klasifikasi Material Polimer

Material polimer dapat diklasifikan berdasarkan ketahanan *thermal*-nya. Klasifikasi material polimer berdasarkan ketahanan termalnya adalah sebagai berikut [10]:

1. Polimer Thermoplastic

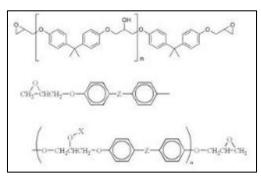
Polimer *thermoplastic* merupakan jenis polimer yang tidak tahan akan temperatur tinggi dan memiliki rantai hidrokarbon berbentuk lurus. Polimer *thermoplastic* dapat dilunakkan berulang kali (*recycle*) dengan pemberian temperatur tinggi, lalu akan dapat mengeras kembali jika dilakukan pendinginan. Contoh produk polimer *thermoplastic* adalah *polyamid*, *nylon*, *polysurface*, dan lain sebagainya.

2. Polimer *Thermosetting*

Polimer *thermosetting* sering digunakan dalam pembuatan komposit dengan penguat serat maupun serbuk. Jenis polimer ini tahan akan temperatur tinggi dan memiliki rantai hidrokarbon yang bercabang. Polimer *thermosetting* tidak dapat mengikuti perubahan temperatur (*irreversible*), ketika telah dilakukan pengerasan maka tidak akan dapat dilunakkan kembali. Polimer *thermosetting* sangat sulit untuk terurai dan didaur ulang. Contoh polimer *thermosetting* adalah resin *epoxy*, *polyester*, *phenolic*, bakelit, dan lain sebagainya.

3. Polimer *Elastromers*

Polimer *elastromers* merupakan jenis polimer yang ketahanan termalnya juga rendah, namun memiliki tingkat elastisitas yang tinggi. Rantai hidrokarbon pada *elastromers* berbentuk jala. Contoh produk polimer *elastromers* adalah karet alam (*rubber*)


2.2.3 Polimer *Epoxy* Resin

Matriks *epoxy* merupakan jenis resin thermoset, *epoxy* mempunyai kegunaan yang luas dalam industri kimia teknik, listrik, mekanik, dan sipil sebagai bahan perekat, cat pelapis, dan benda-benda cetakan. Selain itu mempunyai kekuatan yang tinggi, resin epoksi juga mempunyai ketahanan kimia yang baik [3].

KEDJAJAAN

Epoxy paling umum yang dihasilkan dari reaksi antara epiklorohidrin dan bisphenol-A. Pengeras terdiri dari monomer polyamine, contohnya Triethylenetetramine (Teta). Ketika senyawa ini dicampur bersama, kelompok amina bereaksi dengan kelompok epoksida untuk membentuk ikatan kovalen. Setiap kelompok NH dapat bereaksi dengan kelompok epoksida, sehingga polimer

yang dihasilkan sangat silang, dan dengan demikian kaku dan kuat [11]. Polimer *epoxy* dapat dilihat pada Gambar 2.9

Gambar 2.9 Ikatan Polimer *Epoxy* [12]

Tabel 2.1 Properties Epoxy Bisphenol Epichlorohydrin

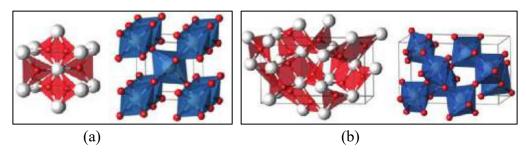
Properties	Nilai
Massa Jenis ρ	1.12 - 1.18 g/cm ³
Kekuatan Tarik	25 – 100 Mpa
Modulus Young	2-6 GPa
Persentasi Perpanjangan	1-6%
Kekuatan Tekan	100-200 Mpa

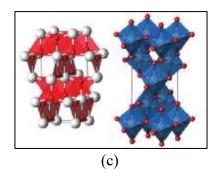
2.3 Tinjauan *Titanium Dioxide* (TiO₂)

2.3.1 Titanium Dioksida

Titanium dioksida, disebut juga titanium (IV) dioksida atau titania, adalah titanium dioksida yang terbentuk secara alami namun diekstrak dari *leuxocene* dan bijih *ilmenite*. Secara kimia titanium dioksida dituliskan dengan lambang TiO₂. Titanium dioksida bisa didapatkan dengan menggunakan proses sintesis, ada beberapa metode sintesis yang bisa digunakan yaitu metode sol gel yang menggunakan larutan *titanium alkoxides*, metode *hydrotermal*, metode sonokimia, metode *solvothermal*, metode oksidasi langsung, metode *microwave* dan metode *coprecipitation*. macam-macam morfologi yang dimiliki oleh titanium dioksida nanopartikel, *nanorods*, *nanotube*, *nanowire* dan *struktur mesoporous*. [13].

TiO₂ merupakan salah satunya nanomaterial paling penting yang telah menarik perhatian besar karena sifatnya yang unik, yaitu; sifat optik, dielektrik, elektronik, katalitik, spektral, struktural, mekanik, anti korosi serta


biokompabilitas. TiO₂ sudah banyak digunakan dalam industri selama bertahuntahun, jika dibandingkan dengan pengisi baru yang lebih baru yang juga dapat digunakan untuk memperkuat matriks (misalnya karbon *nanotube*) [14]. Karena alasan ini, TiO₂ mudah ditemukan di pasaran dan dapat digunakan sebagai pelengkap nano untuk menghasilkan sistem komposit untuk aplikasi langsung. Nanopartikel TiO₂ dapat disintesis dari berbagai metode fisik dan kimia, yang menghasilkan partikel yang berbeda dalam bentuk, ukuran, dan sifat kimia atau fisik [15].


Tabel 2.2 Karakteristik nanopartikel TiO₂ [15]

Properties	Value RSITAS ANDALAS
Density	4,2 - 4,5 g.cm ⁻³
Tensile Strength (Mpa)	350
Compressive Strength (MPa)	650 – 680
Modulus (Gpa)	200-300
Comp. Strength (MPa)	800-1000
Hardness (Kg.f.mm ⁻²)	980

2.3.2 Struktur Kristal TiO₂

Secara umum TiO₂ memilki tiga struktur kristal yaitu *anatase*, *rutile* dan *brookite* tampak pada Gambar 2.9 (a) fase *rutile* didapatkan ketika dikalsinasi pada suhu tinggi, fase ini memiliki struktur *tetragonal* dengan densitas sebesar 4,120 g/cm³, (c) *Anatase* merupakan fase TiO₂ yang terbentuk ketika dikalsinasi pada suhu rendah, fase ini memiliki struktur *tetragonal* dengan densitas 3,894 g/cm³. Sedangkan *brookite* (b) merupakan fase yang sulit ditemukan, fase *brookite* memiliki struktur *rhombohendral* dengan densitas sebesar 4,120 g/cm³ [16].

Gambar 2.9 Representasi polyhedral dari (a) rutile (b) brookite (c) anatase [16]

2.4 Karakteristik Material Komposit

Karakteristik material komposit dapat diihat melalui beberapa parameter pengujian yaitu pengujian fisik dan pengujian mekanik. Pengujian fisik yang dilakukan adalah uji densitas dan porositas, sedangkan pengujian mekanik yang dilakukan yaitu pengujian tarik, pengujian tekan, pengujian lentur, dan pengujian geser yang bertujuan untuk mengetahui sifat mekanik dari material yang diuji.

2.4.1 Densitas dan Porositas

Pengujian densitas merupakan pengujian sifat fisik terhadap spesimen, yang bertujuan untuk mengetahui nilai kerapatan massa dari spesimen yang diuji. Densitas merupakan ukuran kepadatan dari suatu material yang didefinisikan sebagai massa persatuan unit volume. Pengujian densitas dilakukan berdasarkan hukum *archimedes* dengan cara menimbang sampel uji diudara dan didalam air. Untuk menghitung nilai densitas aktual dan densitas teoritis menggunakan persamaan berikut [17]:

$$\rho_{\text{aktual}} = \frac{\text{Berat diudara }(g)}{\text{Berat Diudara }(g) - \text{Berat dalam air }(g)} \times \rho_{\text{air}} \quad \dots (1)$$

$$\rho_{\text{teoritis}} = (\rho_{ep} \cdot V_{ep}) + (\rho_{TiO2} \cdot V_{TiO2})$$
 ... (2)

Porositas didefinisikan sebagai perbandingan antara volume ruang yang terdapat diantara serbuk yang berupa pori-pori (ruang diantara serbuk yang terisi oleh udara). Pengujian porositas dilakukan dengan menggunakan metode *archimedes* untuk menentukan ukuran dari ruang kosong diantara material dan merupakan fraksi dari volume ruang kosong terhadap total volume dalam bentuk persentase 0 – 100%. Densitas dan porositas material dipengaruhi oleh struktur

mikronya. Struktur mikro memberikan informasi tentang orientasi kristalin, distribusi material penyusun, cacat, batas butir, ukuran butir atau pori [18]. Untuk menghitung nilai porositas (Ø) menggunakan persamaan berikut [17]:

$$\emptyset = \frac{\rho_{teoritis} - \rho_{aktual}}{\rho_{teoritis}} \times 100 \% \qquad \dots (3)$$

2.4.2 Sifat Mekanik Komposit

Sifat mekanik dari material komposit seperti kekerasan, kekuatan, ketangguhan, keuletan, kelentingan dan modulus elastisitas diperoleh dari hasil pengujian mekanik material.

a) Pengujian Tarik (Tensile Test)

Tujuan utama dilakukannya pengujian tarik material ini adalah untuk menganalisa respon material pada saat dikenakan beban atau deformasi terhadap pembebanan statis yang diberikan serta untuk memprediksi performa material dibawah kondisi pembebanan. Prinsip pengujian ini yaitu sampel atau benda uji dengan ukuran dan bentuk tertentu diberi beban tarik *unaxia*l (Satu arah) yang bertambah secara kontinu hingga spesimen tarik tersebut putus, bersamaan dengan penarikan tersebut dilakukan pengamatan pertambahan panjang yang dialami spesimen uji. Rumus untuk kekuatan tarik menggunakan persamaan sebagai berikut:

Kekuatan tarik (MPa),
$$\sigma = \frac{P}{A0}$$
 ... (4)

Elongation/strain (mm/mm),
$$\mathcal{E} = \frac{\Delta L}{Lo}$$
 ... (5)

Modulus elastisitas (GPa),
$$E = \frac{\Delta \sigma}{\Lambda \varepsilon}$$
 ... (6)

b) Pengujian Tekan (Compress Test)

Pengujian dilakukan untuk mengetahui kekuatan suatu material komposit dengan cara memberikan beban gaya tekan yang searah yang bertujuan untuk mengetahui kekuatan material terhadap gaya tekan pada spesimen uji. Rumus kekuatan tekan dapat menggunakan persamaan :

Kekuatan tekan,
$$F^{CU} = \frac{Pf}{Wh} \qquad ... (7)$$

Modulus elastisitas tekan,
$$E^{C} = \frac{P2 - P1}{(\epsilon x 2 - \epsilon x 1)Wh} \qquad ... (8)$$

c) Pengujian Lentur (Three Point Bending Test)

Pengujian kelenturan ditujukan untuk mengetahui ketahanan material komposit terhadap beban lentur. Pengujian lentur ini dilakukan dengan metode three point bending yang memiliki tiga titik utama, yaitu dua titik tumpuan pada pinggir spesimen uji dan satu titik pembebanan pada bagian tengah spesimen. Selanjutnya, beban lentur dengan kecepatan konstan diberikan kepada spesimen hingga spesimen mengalami perpatahan.

Kekuatan bending,
$$\sigma_f = \frac{3 PL}{2Rd^2}$$
 ... (9)

Kekuatan bending,
$$\sigma_f = \frac{3 PL}{2B d^2 VDA LAS} \qquad ... (9)$$
Modulus bending,
$$E = \frac{11 \cdot FL^3}{32 \cdot bh^3 \delta} \qquad ... (10)$$

d) Pengujian Geser (Shear Test)

Pengujian ini dilakukan untuk menguji ketahanan suatu material, dimana material didesak melalui dua arah yang berbeda dengan besar gaya yang sama sampai terjadi deformasi (perubahan bentuk) atau displacement (proses pergeseran) dari suatu material. Pada proses pengujian geser sesuai acuan ASTM D5379 benda uji diberi takikan berbentuk V-notch (sudut 90°). Sudut 90°(Vnotch) pada sisi benda uji digunakan menghasilkan pembebanan geser murni tanpa bending dibagian *midspan* dari spesimen antara V-*notch* dan menunjukkan nilai kesalahan atau error yang cukup tinggi dikarenakan proses pengujian berjalan secara geser melintang. Besarnya kekuatan geser diseluruh bagian takikan (V-notch) spesimen dapat dihitung dengan persamaan :

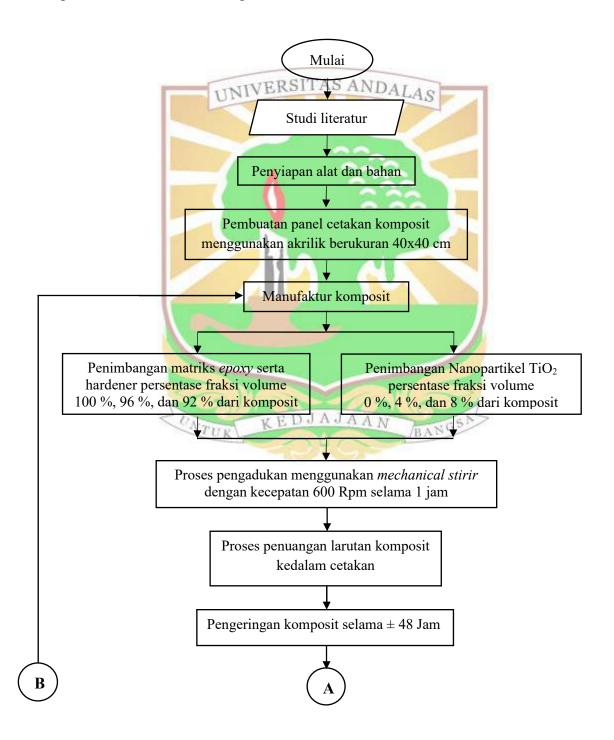
Tegangan geser,
$$\tau = \frac{P}{Ao} \qquad ... (11)$$

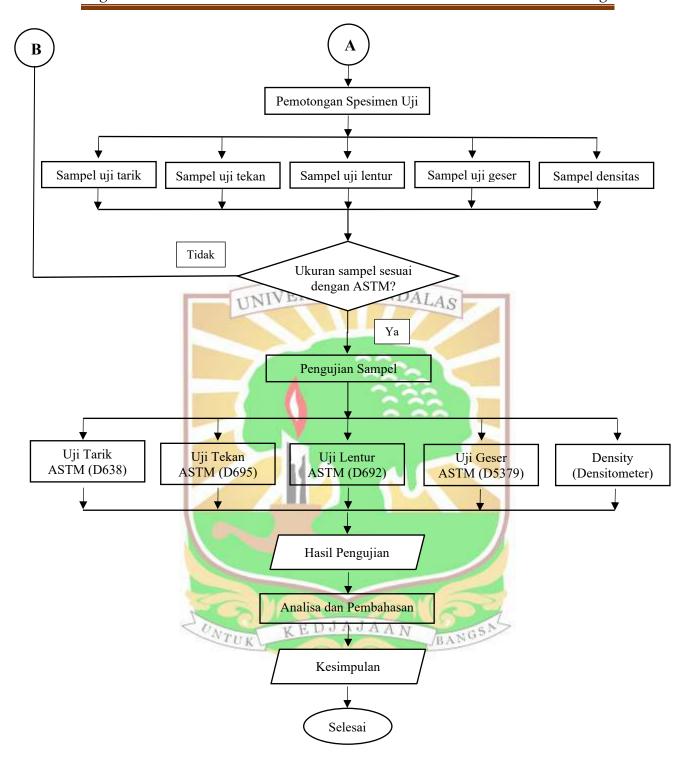
Modulus geser,
$$G^{chord} = \frac{\Delta \tau}{\Delta \gamma}$$
 ... (12)

2.5 Tinjauan Penelitian Sebelumnya

Pada penelitian sebelumnya, telah dilakukan Amit Chatterjee dan Muhammad S. Islam (2008) telah mempelajari efek nano TiO₂ pengisi terhadap sifat mekanik TiO₂ epoxy nano komposit. Penelitian tersebut menyimpulkan bahwa nano infus *filler* meningkatkan sifat mekanik, termal dan viskoelastik dari

resin *epoxy*. Mereka juga menunjukkan bahwa ada peningkatan pada modulus penyimpanan, modulus tarik, modulus lentur dan modulus geser dari resin epoxy murni [19]. Penelitian Hamming et al. (2009) mengukur efek dispersi dan modifikasi antar muka pada properti skala makro TiO₂ polimer Matrik *nanocomposites*. Hal ini diamati bahwa ada penurunan suhu transisi (T_g) sebagai persen berat nanopartikel dimodifikasi menjadi meningkat. Dalam studi mereka itu menunjukkan bahwa T_g sangat sensitif terhadap kualitas interaksi antar muka dan kualitas dispersi nanopartikel [20].


Pada penelitian A. Mirmohseni dan S. Zavareh (2010) mempelajari peningkatan ketangguhan dengan penambahan pengisi nano seperti TiO₂. Mereka mengamati bahwa dampak dan kekuatan tarik meningkat dengan pengisi nano dibandingkan dengan epoxy murni [21]. Penelitian Zhou et al. (2010) mempelajari pengaruh TiO₂ ukuran partikel dan fraksi berat pada kekuatan dan kegagalan modus lentur dari *epoxy* diperkuat. Mereka mengamati bahwa partikel berukuran mikro memiliki sedikit efek pada kekuatan lentur pada fraksi berat yang rendah dibandingkan dengan partikel nano. Namun, lebih dari 1% dari nano TiO₂ mengurangi sifat mekanik karena konsentrasi stres yang disebabkan oleh aglomerasi partikel nano [22].


Penelitian Hamad A. Al-Turaif (2010) Sifat mekanik resin epoksi yang dikeraskan dengan dua ukuran partikel nano TiO₂ (17 nm dan 50 nm) pada fraksi berat yang berbeda (1%, 3%, 5% dan 10%) Hasil menunjukkan peningkatan sifat mekanik komposit epoksi karena penambahan fraksi kecil partikel TiO₂. Nilai tegangan tarik tertinggi ditemukan pada 3wt%. Sifat-sifat lentur maksimum ditemukan pada fraksi TiO₂ yang lebih rendah, hanya 1% saja. Partikel yang lebih kecil menghasilkan sifat mekanik yang lebih baik daripada partikel yang lebih besar. Namun, jumlah tambahan partikel TiO₂ menyebabkan penurunan sifat mekanik [23]. Sedangkan penelitian Siddhartha et al. (2011) mengamati bahwa komposit *epoxy* bergradasi TiO₂ menunjukan kekuatan tarik, kekuatan lentur, tarik modulus, lentur modulus dan dampak peningkatan kekuatan dengan peningkatan persentase *filler* hingga 20 wt% [24].

BAB III METODOLOGI

3.1 Skema / Diagram Alir Penelitian

Untuk mempermudah dan memperjelas apa saja yang harus dilakukan agar didapatkan hasil penelitian yang diinginkan maka perlu dibuat langkah-langkah penelitian dalam bentuk diagram alir.

Gambar 3.1 Diagram Alir Penelitian

3.2 Peralatan dan Bahan

3.2.1 Peralatan Penelitian

Peralatan yang digunakan untuk penelitian ini adalah

1) Timbangan Digital

Timbangan digital berfungsi untuk menghitung massa dari bahan yang digunakan dalam pembuatan komposit.

Spesifikasi timbangan digital yang digunakan adalah:

• Merk : Precissa

Satuan : Gram-Ons
 Kapasitas Maksimum : 5000 gr AS ANDALAS

Gambar timbangan digital dapat dilihat pada Gambar 3.2

Gambar 3.2 Timbangan Digital

2) Cetakan komposit

Cetakan berfungsi sebagai media tempat mencetak komposit yang dibuat. Cetakan terbuat dari akrilik berbentuk persegi panjang dengan dimensi 40 cm x 40 cm x 2 cm, serta bagian alasnya kaca. Cetakan dapat dilihat pada Gambar 3.3

Gambar 3.3 Cetakan komposit akrilik

3) Gelas Ukur

Gelas Ukur berungsi untuk mengukur volume larutan yang digunakan pada penelitian. Gelas ukur dapat dilihat pada Gambar 3.4

Gambar 3.4 Gelas Ukur

4) Digital Calipper

Digital Calipper adalah alat ukur mekanik yang di gunakan untuk mengukur dimensi seperti panjang dan lebar spesimen yang akan di uji. Digital calipper dapat dilihat pada Gambar 3.5

Gambar 3.5 Digital Calipper

KEDJAJAAN

5) Mikrometer Digital

Mikrometer Digital adalah alat ukur mekanik yang digunakan untuk mengukur ketebalan spesimen yang nantinya akan dilakukan pengujian. Mikrometer digital dapat dilihat pada Gambar 3.6

Gambar 3.6 Mikrometer Digital

6) Densitometer

Densitometer adalah alat yang digunakan untuk mengukur tingkat densitas / massa jenis suatu material. Densitometer dapat dilihat pada Gambar 3.7

Gambar 3.7 Densitometer

7) Universal Testing Machine (UTM)

UTM adalah alat uji untuk mengetahui kekuatan suatu bahan material. UTM dapat dilihat pada Gambar 3.8

Gambar 3.8 Universal Testing Machine

8) Band Saw Oscar

Band saw digunakan untuk memotong spesimen / sampel dengan dimensi yang telah ditentukan. Band saw dapat dilihat pada Gambar 3.9

Gambar 3.9 Band Saw Oscar

9) Mesin Amplas RK7866

Mesin amplas ini digunakan untuk mengamplas permukaan spesimen yang telah dipotong agar sesuai dengan dimensi. Mesin amplas dapat dilihat pada

Gambar 3.10

Gambar 3.10 Mesin Amplas RK7866

3.2.2 Bahan

1) Nanopartikel Titanium Dioksida (TiO₂)

Serbuk TiO_2 (nano *filler*) yang digunakan dalam penelitian ini, dengan ukuran partikel berkisar 30 ± 50 nm dengan densitas 4,25 g/cm³. Titanium dioksida dapat dilihat pada Gambar 3.11

Gambar 3.11 Serbuk Titanium dioksida

2) Resin dan Hardener *Epoxy*

Resin *epoxy* (matriks) merupakan bahan polimer yang digunakan dalam pembuatan komposit, serta hardener *epoxy* sebagai *curing agent*. Resin dan hardener *epoxy* dapat dilihat pada Gambar 3.12

Gambar 3.12 Resin dan hardener epoxy

3) Maximum Mold Release Wax

Wax ini sepintas mirip mentega / keju ketika masih di dalam wadahnya. Berfungsi sebagai pelicin padat tahap pencetakan dan agar resin tidak menempel pada cetakan. Wax dapat dilihat pada Gambar 3.13.

3.3 Proses Pembuatan Spesimen

3.3.2 Proses Manufaktur

1. Persiapan

Dalam proses ini dilakukan persiapan peralatan dan pembersihan permukaan cetakan / kaca yang telah disediakan. Lalu pada cetakan tersebut dioleskan wax sebagai *release agent*. Adapun bentuk cetakan yang akan digunakan dapat dilihat pada Gambar 3.14

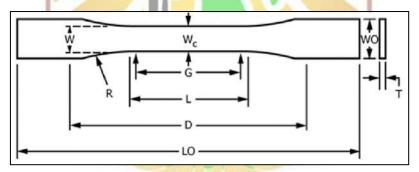
Gambar 3.14 Cetakan


- 2. Persiapan alat dan bahan
- 3. Penimbangan massa nano partikel TiO₂ dan massa resin yang dibutuhkan sesuai dengan fraksi volum yang telah ditentukan.
- 4. Selanjutnya pencampuran nano partikel TiO₂ dengan resin *epoxy* menggunakan pengaduk *mechanical stirrir* dengan kecepatan 600 Rpm selama 60 menit.
- 5. Setelah itu, dilakukan penuangan komposit yang telah homogen ke dalam cetakan sampai merata.
- 6. Proses pengeringan, proses ini dilakukan sampai benar-benar kering yaitu 2-3 hari dan apabila masih belum benar-benar kering maka proses pengeringan dapat dilakukan lebih lama.
- 7. Proses pengambilan komposit dari cetakan yaitu menggunakan pisau atau *cutter*.
- 8. Finishing, menghaluskan permukaan komposit.

3.4 Penyiapan Spesimen Uji

Setelah material atau spesimen terbentuk maka dilakukan persiapan untuk pemotongan sampel spesimen pengujian dengan tipe pengujian density, pengujian tarik sesuai ASTM D638, pengujian tekan sesuai ASTM D695, pengujian geser sesuai dengan standar ASTM D5379, Pengujian *flexural test* sesuai dengan ASTM D790, Standar ini dimaksudkan mengikuti taraf pengujian internasional untuk mendapatkan sifat mekanik dengan baik dan akurat.

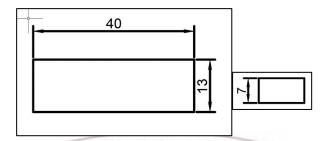
3.4.1 Spesimen Uji Densitas


Pengujian densitas dengan memotong spesimen sebanyak 10 buah pada masing-masing variasi fraksi volum dengan dimensi 10 mm x 10 mm. Spesimen akan diuji menggunakan alat densitometer seperti pada Gambar 3.8. Masing-masing spesimen dapat dilihat pada Gambar 3.15

Gambar 3.15 Sampel uji densitas

3.4.2 Spesimen Uji Tarik

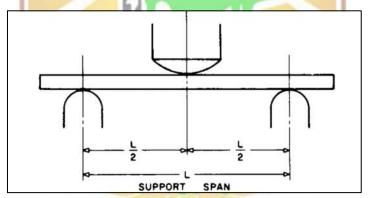
Standar uji yang digunakan yaitu bentuk spesimen tarik berdasarkan standar ASTM D638. Dimensi spesimen dapat dilihat pada Gambar 3.16 [25].


Gambar 3.16 Dimensi Spesimen Uji Tarik ASTM D638 [25]

Keterangan:

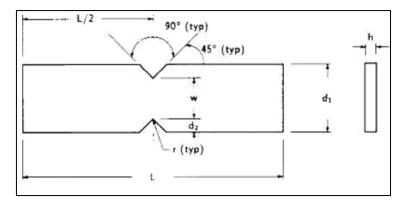
LO	: Length Overall	165 mm
D	: Distance between grips	$115 \pm 0.5 \text{ mm}$
L	: Length of narrow section	$57 \pm 0.5 \text{ mm}$
G	: Gage length	$50 \pm 0.5 \; mm$
Wo	: Width overall	$19 \pm 0.5 \text{ mm}$
W	: Width of narrow section	$13 \pm 0.5 \text{ mm}$
R	: Radius of fillet	$76 \pm 0.5 \text{ mm}$
T	: Thickness	$7 \pm 0.5 \text{ mm}$

3.4.3 Spesimen Uji Tekan


Standar Pengujian ASTM D695 telah mengacu kepada standar pengujian tekan, spesimen uji disiapkan dengan penampang persegi dengan panjang 40 mm dan lebar 13 mm. Dapat dilihat pada Gambar 3.17

Gambar 3.17 Dimensi spesimen uji tekan ASTM D-695

3.4.4 Spesimen Uji Lentur


Standar Pengujian ASTM D790 telah mengacu kepada standar pengujian lentur material. Seperti yang disarankan dalam standar, spesimen uji disiapkan dengan penampang persegi dengan panjang 112 mm, lebar 27 mm serta tebal 7 mm. Dapat dilhat pada Gambar 3.18 [26].

Gambar 3.18 Dimensi spesimen uji lentur ASTM D-790 [26]

3.4.5 Spesimen Uji Geser

Standar Pengujian ASTM D5379 telah mengacu kepada standar pengujian geser material. Seperti yang disarankan dalam standar, spesimen uji disiapkan dengan penampang persegi dengan panjang 76 mm, lebar 20 mm dan tebal 7 mm dengan sudut takikan V-*notch* 90°. Spesimen uji geser dapat dilihat pada Gambar 3.19 [27].

Gambar 3.19 Dimensi uji geser ASTM D-5379 [27]

3.5 Pengujian Komposit

3.5.1 Pengukuran Densitas

Pada penelitian ini dilakukan pengukuran dari densitas spesimen komposit dengan media air menggunakan alat densitometer. Untuk lebih rinci, prosedur pengujian dari pengukuran densitas sebagai berikut:

- Di isi air sebagai media pada gelas ukur pada alat densitometer sebanyak 500 gr.
- Diletakan sampel spesimen pada cawang atas dari alat densitometer. 2.
- 3. Ditimbang berat massa sampel di udara, lalu tekan tombol set jika hasil yang tercantum di display sudah akurat dan dicatat berat massa di udara.
- 4. Dipindahkan sampel spesimen pada cawang atas alat ke cawang bawah alat untuk mendapatkan berat di air
- 5. Sampel spesimen ditimbang berat massa komposit di air lalu tekan tombol set jika hasil yang tercantum di display sudah akurat dan dicatat berat massa di udara.
- Kemudian tekan tombol OK pada display untuk mendapatkan nilai rho 6. dari komposit
- Dilakukan proses densitas sesuai urutan 1-10 sebanyak 10 sampel 7. spesimen.

3.5.2 Pengujian Tarik (Tensile Strength Test)

Penelitian ini menggunakan standar pengujian material ASTM D-638 tentang *Standart test method for tensile properties of polymer materials*.

- a. Peralatan uji tarik
 - Mesin Uji UTM Tensilon (Universal Testing Machine)
 - Jangka sorong digital mitutoyo
- b. Sampel uji tarik

Spesimen uji tarik sesuai dengan ASTM D-638 sebanyak 7 spesimen untuk ukuran dimensi dapat dilihat Gambar 3.17.

c. Kondisi pengujian UNIVERSITAS ANDALAS
Uji tarik dilakukan pada kondisi standar laboratorium yaitu pada suhu 22 ± 2°C dengan kelembaban relatif 47 ± 10 %.

- d. Prosedur pengujian
 - 1. Pengukuran dilakukan menggunakan jangka sorong digital mitutoyo untuk mendapatkan ukuran panjang, lebar dan ketebalan sampel uji di beberapa titik sampel.
 - 2. Lakukan pengaturan mesin uji di *personal computer*, untuk *test speed* diset 5,0 mm/min, *initial sample length distance* diset 115 mm, serta diinputkan ukuran dimensi spesimen.
 - 3. Sampel dijepit oleh jig mesin uji tarik lalu periksa kelurusan sumbunya.
 - 4. Periksa dudukan sampel untuk mencegah terjadinya slip sewaktu pengujian dilakukan.
 - 5. Tekan tombol on pada mesin uji untuk proses penarikan sampel sampai terjadi kegagalan atau putus.
 - 6. Ulangi langkah di atas untuk sampel yang lain.

Pengujian uji tarik dapat dilihat pada Gambar 3.20

Gambar 3.20 Uji Tariki AS

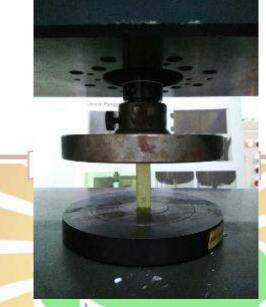
3.5.3 Pengujian Tekan (Compressive Test)

Penelitian ini menggunakan standar pengujian material ASTM D695 tentang Standar *Test Method for Compressive Properties of Rigid polymer*.

- a. Peralatan uji tekan
 - Mesin uji tekan
 - Jangka sorong digital mitutoyo
- b. Sampel uji tekan

Sampel uji tekan dengan dimensi 50 mm x 12 mm x 7 mm dapat dilihat pada Gambar 3.18.

c. Kondisi pengujian


Uji tarik dilakukan pada kondisi standar laboratorium yaitu pada suhu 23 $\pm 3^{\circ}$ C dengan kelembaban relatif $50 \pm 10^{\circ}$ K.

- d. Prosedur pengujian
 - Pengukuran dilakukan menggunakan jangka sorong digital mitutoyo untuk mendapatkan ukuran lebar dan ketebalan sampel uji di beberapa titik sampel.
 - 2. Lakukan pengaturan mesin uji di *personal computer*, untuk *test speed* diset 2,0 mm/min, *initial sample length distance* diset 12,7 mm, serta diinputkan ukuran dimensi spesimen.
 - 3. Sampel dijepit oleh mesin uji pada dudukan lalu periksa kelurusan sumbunya.

4. Tekan tombol on pada mesin uji untuk proses penekanan sampel sampai terjadi kegagalan atau putus.

5. Ulangi langkah di atas untuk sampel yang lain.

Pengujian uji tekan dapat dilihat pada Gambar 3.21

Gambar 3.21 Uji Tekan

3.5.4 Pengujian Lentur (Three point bending Test)

Pengujian kelenturan ditujukan untuk mengetahui ketahanan material komposit terhadap beban lentur. Pengujian lentur ini dilakukan dengan metode three point bending yang memiliki tiga titik utama, yaitu dua titik tumpuan pada pinggir spesimen uji dan satu titik pembebanan pada bagian tengah spesimen. Selanjutnya, beban lentur dengan kecepatan konstan diberikan kepada spesimen hingga spesimen mengalami perpatahan.

Penelitian ini menggunakan standar pengujian material ASTM D-790 tentang *Standart test method for bending properties of polymer materials*.

- a. Peralatan uji lentur
 - Mesin Uji UTM Tensilon (Universal Testing Machine)
 - Jangka sorong digital mitutoyo
- b. Sampel uji lentur

Spesimen uji lentur sesuai dengan ASTM D-790 sebanyak 7 spesimen untuk ukuran dimensi dapat dilihat Gambar 3.19.

c. Kondisi pengujian

Uji tarik dilakukan pada kondisi standar laboratorium yaitu pada suhu 22 \pm 2°C dengan kelembaban relatif 47 \pm 10 %.

d. Prosedur pengujian

- Pengukuran dilakukan menggunakan jangka sorong digital mitutoyo untuk mendapatkan ukuran panjang, lebar dan ketebalan sampel uji di beberapa titik sampel.
- Lakukan pengaturan mesin uji di personal computer, untuk test speed diset
 5,0 mm/min, initial sample length edge span diset 121 mm, serta diinputkan ukuran dimensi spesimen.
- 3. Sampel dijepit oleh jig mesin uji tarik lalu periksa kelurusan sumbunya.
- 4. Periksa dudukan sampel untuk mencegah terjadinya slip sewaktu pengujian dilakukan.
- 5. Tekan tombol on pada mesin uji untuk proses penarikan sampel sampai terjadi kegagalan atau putus.
- 6. Ulangi langkah di atas untuk sampel yang lain.

Pengujian uji lentur dapat dilihat pada Gambar 3.22

Gambar 3.22 Uji Lentur

3.5.4 Pengujian Geser (Shear Strength Test)

Pengujian geser menggunakan standar pengujian material sesuai ASTM D5379. Sifat uji geser yang diharapkan pada pengujian ini yaitu dapat mengetahui

kekuatan geser bahan komposit terhadap ketahanan geser maksimum yang mampu ditahan oleh spesimen [27]. Pada spesimen dibuat takikan V *Notch*.

Untuk prosedur pengujian dapat dilihat sebagai berikut:

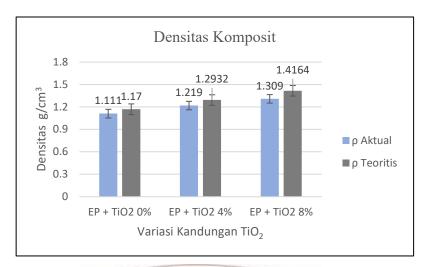
- 1. Dilakukan pengukuran untuk dimensi lebar dan ketebalan sampel di beberapa titik sampel dengan jangka sorong digital mitutoyo.
- 2. Dilakukan pengaturan mesin uji.
- 3. Dijepit sampel oleh mesin uji pada grip.
- 4. Dicek kembali posisi *grip* apakah sudah sesuai dengan sampel untuk menghindari terjadinya *slip* pada saat pengujian berlangsung.
- 5. Dilakukan setting pada kertas milimeter yang membaca hasil pengujian.
- 6. Ditekan tombol ON pada mesin uji untuk proses pengujian sampai terjadinya kegagalan sampel spesimen.
- 7. Ulangi langkah di atas untuk sampel yang lain.

Pengujian uji geser dapat dilihat pada Gambar 3.23

Gambar 3.23 Uji Geser

BAB IV HASIL DAN PEMBAHASAN

Penelitian tugas akhir ini telah dilakukan di Pusat Teknologi Penerbangan (Pustekbang), LAPAN. Diperoleh hasil pengujian sifat fisik yakni densitas serta porositas dan sifat mekanik berupa hasil pengujian tarik, uji tekan, uji lentur dan uji geser.


4.1 Pengujian densitas dan porositas

Uji densitas merupakan pengujian sifat fisik pada spesimen dengan tujuan mendapatkan nilai massa jenis dari setiap sampel yang diuji menggunakan densitometer. Pengujian dilaksanakan dilaboratorium aerostruktur LAPAN, pengkondisian lokasi pengujian dengan temperatur 24,5°C dan kelembaban 38,8%. Tahapan untuk pengujian densitas ini yaitu dimulai dengan mengukur massa masing-masing sampel komposit dengan cara ditimbang diudara, kemudian dilakukan pengukuran massa sampel komposit ketika tercelup dalam air. Setelah didapat nilai massa sampel di udara dan tercelup dalam air, secara otomatis pada layar densitometer keluar nilai massa jenis komposit.

Berikut hasil rata-rata pengujian densitas masing-masing fraksi volume ditampilkan pada Tabel 4.1.

Tabel 4.1 Hasil rata-rata pengujian density dan porositas

Persentase	M di udara (g)	M di air	ρ Aktual (g/cm³)	ρ Teoritis (g/cm³)	Porositas (%)
EP + TiO ₂ 0%	$0,839 \pm 0,033$	$0,093 \pm 0,0065$	$1,111 \pm 0,0053$	1,17	5,044
EP + TiO ₂ 4%	$1,085 \pm 0,0576$	$0,206 \pm 0,0122$	$1,219 \pm 0,0063$	1,2932	5,737
EP + TiO ₂ 8%	$1,207 \pm 0,0636$	$0,296 \pm 0,0252$	$1,309 \pm 0,0041$	1,4164	7,58

Gambar 4.1 Densitas Komposit

Dari Gambar dan Tabel 4.1 data hasil pengujian densitas aktual komposit *epoxy* dengan variasi kandungan TiO₂ menunjukkan bahwa untuk spesimen massa jenis *epoxy* murni diperoleh rata-rata sebesar 1,11 g/cm³, sedangkan untuk spesimen *epoxy* dengan kandungan TiO₂ 4% diperoleh massa jenis rata-rata sebesar 1,219 g/cm³ dan spesimen *epoxy* dengan kandungan TiO₂ 8% massa jenisnya rata-rata sebesar 1,309 g/cm³.

Dapat dilihat bahwa adanya perbedaan nilai densitas diantara ketiga variasi kandungan TiO₂, dimana fraksi volume mempengaruhi nilai massa jenis komposit. Semakin besar variasi fraksi volume TiO₂ maka densitas komposit semakin meningkat, begitu juga sebaliknya. Densitas yang semakin tinggi menunjukan material komposit tersebut memiliki kerapatan antar partikel yang tinggi.

Gambar 4.2 Persentase porositas didalam komposit

Pengujian porositas dilakukan setelah uji densitas, dimana pengujian ini dilakukan untuk menentukan ukuran dari ruang kosong diantara material komposit dalam bentuk persentase 0 – 100%. Pada grafik memperlihatkan bahwa semakin tinggi kandungan TiO₂ didalam komposit maka porositas atau ruang kosong didalam material komposit juga semakin meningkat, dari grafik diatas memperlihatkan bahwa nilai porositas tertinggi pada kandungan *epoxy*-TiO₂ 8% yakni sebesar 7,58%.

Secara visual, hasil dari manufaktur spesimen komposit memperlihatkan adanya gelembung udara (void) yang dapat meningkatkan porositas didalam komposit. Timbulnya void disebabkan adanya udara terperangkap pada proses pengadukan dan penuangan komposit ke dalam cetakan. Adanya porositas didalam komposit dapat menurunkan kekuatan dari sifat mekanik komposit. Hal ini dapat memicu retakan dalam struktur komposit.

4.2 Pengujian Tarik (Tensile Test)

Pengujian ini dilakukan untuk menguji kekuatan serta ketahanan suatu material komposit dengan cara memberikan beban tarik *uniaxial* (satu arah) yang bertambah secara kontinu hingga spesimen tarik tersebut putus. Data pengujian mencakup nilai *maximum point load, maximum point stress, elastic modulus* serta grafik *stress-strain*.

4.2.1 Uji Spesimen Tarik Epoxy 100%: 0 % TiO2

Hasil pengujian tarik dengan material *epoxy* tanpa ditambahkan TiO₂ diperoleh data pengujian tarik yang ditampilkan pada Tabel 4.2.

Tabel 4.2 Hasil pengujian uji tarik EP 100% : 0 % TiO₂ 5 Spesimen.

Width Depth Area Maximum Ultimate

Test No.	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Ultimate Strength (MPa)	Elastic Modulus (GPa)	Break Point Strain %GL
1	13,60	6,57	89,352	1926,5	21,561	1,9784	1,3157
2	13,82	7,05	97,431	2672,4	27,428	2,0916	1,5577
3	13,77	6,81	93,774	2445,5	26,079	2,121	1,5677
5	13,83	6,5	89,895	2409,8	26,807	2,1288	1,5994
6	13,62	6,88	93,706	2481,5	26,482	2,2026	1,5176

Rata-rata	13,728	6,762	92,832	2387,14	25,671	2,104	1,5116
Stdev	0,0987	0,202	2,951	247,542	2,102	0,0728	0,1013

Pada tabel 4.2 merupakan hasil pengujian tarik 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 2387,14 ± 247,542 N, rata-rata *ultimate strength* 25,671 ± 2,102 MPa, rata-rata modulus sebesar 2,104 ± 0,0728 GPa. Untuk nilai *maximum load* dan *ultimate strength* tertinggi dimiliki oleh spesimen ke-2 dengan nilai 2672,4 N dan 27,428 MPa dengan modulus sebesar 2,0916 GPa. Sedangkan untuk nilai *maximum load* dan *ultimate strength* terendah pada spesimen ke-1 sebesar 1926,5 N dan 21,561 MPa dengan modulus sebesar 1,9784 GPa.

4.2.2 Uji Spesimen Tarik *Epoxy* 96%: 4% TiO₂

Hasil pengujian tarik dengan material *epoxy* 96 % yang ditambahkan TiO₂ 4% diperoleh data pengujian ditampilkan pada Tabel 4.3.

Test No.	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Ultimate Strength (MPa)	Elastic Modulus (GPa)	Break Point Strain %GL
1	13,61	7,87	107,11	2824,9	26,374	2,3215	1,4212
2	14,21	7,79	110,7	2818,9	25,466	2,4863	0,0764
4	14,28	7,85	112,1	3059,3	27,291	2,4017	1,4465
5	14,45	7,69	111,12	3161,8	28,454	2,5291	1,7323
6	14,86	7,99	118,73	3748,7	31,573	2,2027	0,0877
Rata-rata	14,282	7,838	111,952	3122,72	27,8316	2,38826	0,952
Stdev	0,4047	0,098	3,7859	340,1187	2,1165	0,117	0,7193

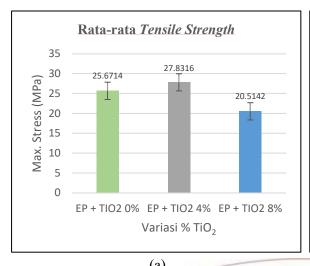
Pada tabel 4.3 merupakan hasil pengujian tarik 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar $3122,72 \pm 340,1187$ N, rata-rata *ultimate strength* $27,8316 \pm 2,1165$ MPa, dan rata-rata modulus elastisitas $2,38826 \pm 0,117$ GPa. Untuk nilai *maximum load* dan *ultimate strength* tertinggi dimiliki oleh spesimen ke-6 dengan nilai 3748,7 N dan 31,573 MPa dengan modulus sebesar 2,2027 GPa. Sedangkan untuk nilai *maximum load* dan *ultimate strength* terendah pada spesimen ke-2 sebesar 2818,9 N dan 25,466 MPa dengan modulus sebesar 2,486 GPa.

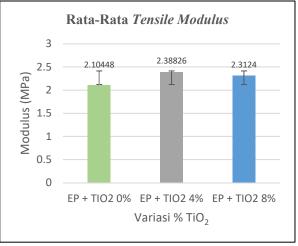
4.2.3 Uji Spesimen Tarik Epoxy 92%: 8 % TiO₂

Hasil pengujian tarik dengan material *epoxy* 92% yang ditambahkan TiO₂ 8% diperoleh data pengujian ditampilkan pada Tabel 4.4.

Tabel 4.4 Hasil pengujian uji tarik EP 92 % : 8% TiO₂

Test No.	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Ultimate Strength (MPa)	Elastic Modulus (GPa)	Break Point Strain %GL
1	13,49	7,59	102,39	2092,5	20,437	2,3124	0,071
2	13,98	7,63	106,67	2322,1	21,769	2,2856	1,3075
3	13,9	7,48	103,97	2200,4	21,163	2,2095	1,1942
5	13,78	7,53	103,76	2186,6	21,073	2,3241	1,1914
6	13,94	7,6	105,94	1920,7	18,129	2,1533	1,0896
Rata-rata	13,818	7,566	104,546	2144,46	20,5142	2,3124	0,9707
Stdev	0,1771	0,0538	1,5526	133,588	1,2651	0,0654	0,4551


Pada tabel 4.4 merupakan hasil pengujian tarik 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 2144,46 ± 133,588 N, *ultimate strength* 20,5142 ± 1,2651 MPa, modulus elastisitas 2,3124 ± 0,0654 GPa. Untuk nilai *maximum load* dan *ultimate strength* tertinggi dimiliki oleh spesimen yang ke-2 dengan nilai 2322,1 N dan 21,769 MPa dengan modulus elastisitas sebesar 2,2856 GPa. Sedangkan untuk nilai *maximum load* dan *ultimate strength* terendah pada spesimen ke-6 sebesar 1920,7 N dan 18,129 MPa dan modulus elastisitas 2,153 GPa.


4.2.4 Perbandingan Hasil Uji Tarik Variasi %Volume Komposit

Hasil pengujian tarik rata-rata material *epoxy*-TiO₂ diperoleh data pengujian ditampilkan pada Tabel 4.5.

Tabel 4.5 Hasil pengujian rata-rata uji tarik

Persentase TiO ₂ Maximum Load (N)		Ultimate Strength (MPa)	Elastic Modulus (GPa)	
EP + TiO ₂ 0%	$2387,14 \pm 247,542$	$25,6714 \pm 2,102$	$2,\!10448 \pm 0,\!073$	
EP + TiO ₂ 4%	$3122,72 \pm 340,112$	$27,8316 \pm 2,116$	$2,38826 \pm 0,117$	
EP + TiO ₂ 8%	$2144,\!46 \pm 133,\!588$	$20,5142 \pm 1,265$	$2,3124 \pm 0,065$	

(b)

Gambar 4.3 Perbandingan rata-rata (a) tensile strength dan (b) tensile modulus

Gambar grafik (a) diatas menunjukan penambahan kandungan TiO₂ 4% didalam resin epoxy, mengalami peningkatan dari nilai tensile strength epoxy murni kenaikannya sebesar 8,41%, sedangkan untuk penambahan TiO₂ 8% nilai tensile strength mengalami penurunan sebesar 20,1%. Menurut hasil penelitian Annlin Bezy et. al (2015) yang menyebutkan bahwa nanokomposit *epoxy*-TiO₂ dengan kandungan persentase 1wt% TiO₂ mengalami kenaikan tensile strength sedangkan seiring penambahan kandungan wt% menyebabkan menurunnya kekuatan tensile strength dari komposit. Ini menunjukan semakin besar kandungan TiO₂ didalam komposit *epoxy*-TiO₂ mengakibatkan terjadinya kekuatan tensile strength [28]. Pada Gambar grafik (b) penurunan memperlihatkan bahwa terjadinya peningkatan tensile modulus epoxy murni dengan penambahan kandungan TiO2. Untuk TiO2 4% kenaikan tensile modulus sebesar 13,48% sedangkan untuk TiO2 8% kenaikan tensile modulus sebesar 9,86%. Jika dibandingkan kedua variasi kandungan TiO₂ tersebut, nilai uji tarik TiO₂ 4% nilainya lebih tinggi dibandingkan dengan penambahan TiO₂ 8%.

Perbedaan nilai uji tarik dapat disebabkan karena komposisi kandungan TiO₂ didalam resin *epoxy*, selain itu proses pencampuran TiO₂ yang kurang merata, serta pengadukannya belum terhomogenisasi sempurna yang mengakibatkan beberapa bagian yang ada di spesimen terbentuk gumpalan dan *void*. Hal ini dapat mempengaruhi hasil pengujian tarik.

4.3 Pengujian Tekan (Compress Test)

Pengujian dilakukan untuk mengetahui kekuatan suatu material komposit dengan cara memberikan beban gaya yang searah yang bertujuan untuk mengetahui kekuatan material terhadap gaya tekan. Data pengujian mencakup nilai maximum point load, maximum point stress, elastic modulus serta grafik stress-strain.

4.3.1 Uji Spesimen Tekan *Epoxy* 100%: 0 % TiO₂

Hasil pengujian tekan dengan material epoxy 100% tanpa ditambahkan TiO₂ diperoleh data pengujian yang ditampilkan pada Tabel 4.6. STVERSITAS ANDALAS

Tabel 4.6 Hasil	pengujian	tekan EP	100 %:	0% TiO ₂
-----------------	-----------	----------	--------	---------------------

Test No.	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Maximum Point Stress (MPa)	Elastic Modulus (MPa)	Break point Strain % GL
1	13,8	7,29	100,6	6392	63,538	926,92	3,6905
2	13,9	7,38	102,58	6162,4	60,073	512,91	3,8041
3	13,63	7,09	96,637	6046,8	62,573	606,6	4,2049
4	13,75	7,35	101,06	6063,5	59,997	1062,9	3,6447
6	13,71	7,14	97,889	5980	61,089	487,93	3,7531
Rata-rata	13,758	7,25	99,7532	6128,94	61,454	719,452	3,8194
Stdev	0,0902	0,1050	2,1726	143,8976	1,3970	232,3777	0,2001

Pada tabel 4.6 merupakan hasil pengujian tekan 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata maximum load sebesar 6128,94 ± 143,897 N, nilai rata-rata maximum point stress 61,454 ± 1,3970 MPa, dan nilai rata-rata elastic modulus 719,452 ± 232,377 MPa. Untuk nilai maximum load dan maximum point stress yang paling tinggi dimiliki spesimen yang ke-1 dengan nilai 6392 N dan 63,538 MPa dengan modulus elastisitas sebesar 926,92 MPa. Sedangkan untuk nilai maximum load dan maximum point stress yang terendah pada spesimen ke-6 sebesar 5980 N dan 61,089 MPa dan modulus 487,93 MPa.

4.3.2 Uji Spesimen Tekan Epoxy 96%: 4 % TiO₂

Hasil pengujian tekan dengan material epoxy 96% ditambahkan TiO₂ 4% diperoleh data pengujian yang ditampilkan pada Tabel 4.7.

Tabel 4.7 Hasil pengujian uji tekan EP 96 %: 4% TiO₂

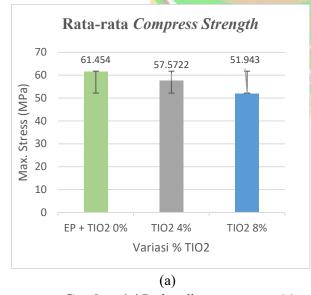
Test No.	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Maximum Point Stress (MPa)	Elastic Modulus (MPa)	Break point Strain % GL
3	13,93	7,01	97,51	5600,2	57,432	916,53	3,6623
4	13,68	6,9	94,392	5358	56,764	1190,96	3,5042
5	13,63	6,77	92,275	5261,6	57,021	647,64	3,2304
6	13,67	6,98	95,417	5444,8	57,064	1691,4	3,556
7	13,75	6,84	94,05	5603,5	59,58	1316,4	3,1879
Rata-rata	13,732	6,9	94,72	5453,62	57,5722	1152,586	3,4282
Stdev	0,1062	0,08831	1,7206	134,1956	1,0262	354,773	0,1864

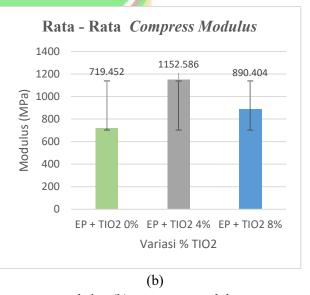
Pada tabel 4.7 merupakan hasil pengujian tekan 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 5453,62 ± 134,195 N, nilai rata-rata *maximum point stress* 57,572 ± 1,026 MPa, dan nilai rata-rata *elastic modulus* 1152,586 ± 354,773 MPa. Untuk nilai *maximum load* dan *maximum point stress* yang paling tinggi dimiliki spesimen ke-7 dengan nilai 5603,5 N dan 59,58 MPa dengan nilai modulus sebesar 1316,4 MPa. Sedangkan untuk nilai *maximum load* dan *maximum point stress* terendah dimiliki spesimen ke-5 sebesar 5261,6 N dan 57,021 MPa dengan nilai modulus sebesar 647,64 MPa.

4.3.3 Uji Spesimen tekan Epoxy 92%: 8 % TiO₂

Hasil pengujian tekan dengan material *epoxy* 92 % ditambahkan TiO₂ 8% diperoleh data pengujian yang ditampilkan pada Tabel 4.8.

Tabel 4.8 Hasil pengujian uji tekan EP 92 %: 8% TiO₂


Test No.	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Maximum Point Stress (MPa)	Elastic Modulus (MPa)	Break point Strain % GL
2	13,79	6,95	95,84	4939,7	51,541	649,8	5,5352
4	13,81	7,16	98,88	5055,4	51,126	1012,8	3,5814
5	13,61	7,11	96,767	4928,8	50,934	1463,1	3,3772
6	13,93	7,13	99,321	5271,1	53,072	968,78	3,6929
7	13,62	7,05	96,021	5093,1	53,042	357,54	3,4132
Rata-rata	13,752	7,08	97,3658	5057,62	51,943	890,404	3,9199
Stdev	0,1217	0,0743	1,4567	124,3681	0,9305	339,347	0,8156


Pada tabel 4.8 merupakan hasil pengujian tekan 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 5057,62 ± 124,368 N, nilai rata-rata *maximum point stress* 51,943 ± 0,9305 MPa, dan nilai rata-rata *elastic modulus* 890,404 ± 339,347 MPa. Untuk nilai *maximum load* dan *maximum point stress* yang paling tinggi yakni pada spesimen yang ke-6 dengan nilai 5271,1 N dan 53,072 MPa dengan nilai modulus sebesar 968,78 MPa. Sedangkan untuk nilai *maximum load* dan *maximum point stress* terendah dimiliki spesimen ke-5 sebesar 4928,8 N dan 50,934 MPa dengan nilai modulus sebesar 1463,1 MPa.

4.3.4 Perbandingan Hasil Uji Tekan Variasi %Volume Komposit

Hasil pengujian tekan rata-rata material *epoxy* dengan penambahan TiO₂ diperoleh data pengujian ditampilkan pada Tabel 4.9.

Persentase TIO2	Maximum Load (N)	Tensile Streng <mark>th</mark> (MPa)	Elastic Modulus (MPa)	
EP + TiO ₂ 0%	6128,94 ± 143,897	$61,454 \pm 1,39$	$719,452 \pm 232,37$	
EP + TiO ₂ 4%	5453,62 ± 134,195	57,572 ± 1,026	$1152,\!586 \pm 354,\!773$	
EP + TiO ₂ 8%	5057,62 ± 124,368	$51,943 \pm 0,93$	890,404 ± 339,347	

Gambar 4.4 Perbandingan rata-rata (a) compress strength dan (b) compress modulus

Gambar grafik (a) diatas memperlihatkan bahwa nilai *compress strength* komposit mengalami penurunan seiring dengan penambahan kandungan TiO₂

didalam resin *epoxy*. Untuk kandungan TiO₂ 4%, mengalami penurunan *compress strength* sebesar 6,32%, sedangkan untuk TiO₂ 8% mengalami penurunan sebesar 15,48 %. Pada gambar grafik (b) menunjukan bahwa nilai *compress modulus* mengalami peningkatan dengan penambahan kandungan TiO₂, besarnya kenaikan *compress modulus* TiO₂ 4% adalah 60,2 %, sedangkan untuk kandungan TiO₂ 8% kenaikannya sebesar 23,76 %. Jika dibandingkan kedua variasi kandungan TiO₂ tersebut, nilai uji tekan TiO₂ 4% nilainya lebih tinggi dibandingkan dengan penambahan TiO₂ 8%.

Perbedaan nilai uji tekan dapat disebabkan karena komposisi kandungan TiO₂ didalam resin *epoxy*, selain itu adanya *void* dan porositas yang ada pada spesimen khususnya pada bagian penampang, sehingga pada saat komposit menerima beban, maka daerah tegangan akan berpindah ke daerah *void* ataupun ruang kosong pada komposit sehingga dapat mengakibatkan penurunan kekuatan tekan komposit. Hal ini dapat mempengaruhi hasil pengujian.

4.4 Pengujian kekuatan lentur (Flexural Test)

Pengujian flexural ini mengacu pada ASTM D790, yang mana menggunakan prinsip three point bending test. Spesimen berada pada titik tumpu dikedua ujungnya, lalu pada bagian tengahnya diberi gaya tekan hingga spesimen patah. Pengujian ini dilakukan untuk mengevaluasi kekakuan dari material uji, Data pengujian mencakup nilai maximum point load, maximum point stress, elastic modulus serta grafik stress-strain.

4.4.1 Uji Spesimen Lentur *Epoxy* 100%: 0 % TiO₂

Hasil pengujian lentur dengan material *epoxy* 100% tanpa ditambahkan TiO₂ diperoleh data pengujian yang ditampilkan pada Tabel 4.10

Tabel 4.10 Hasil pengujian uji lentur EP 100 %: 0% TiO₂

Test No.	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Elastisitac Modulus (MPa)
1	27,69	7,17	361,35	46,073	2058,6
2	27,73	7,47	326,93	38,348	1522,6
4	27,92	7,16	298,28	37,824	1410,0
6	28,45	7,24	397,69	48,401	1798,5

7	27,75	7,00	334,09	44,594	1795,5
Rata-rata	27,908	7,208	343,668	43,048	1717,04
stdev	0,282	0,1527	33,6541	4,2326	228,7074

Pada tabel 4.10 merupakan hasil pengujian lentur 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 343,668 ± 33,6541 N, nilai rata-rata *maximum point stress* 43,048 ± 4,232 MPa, dan rata-rata *elastic modulus* sebesar 1717,04 ± 228,707 MPa. Untuk nilai *maximum load* dan *maximum point stress* yang paling tinggi yakni pada spesimen yang ke-6 dengan nilai 397,69 N dan 48,401 MPa dengan modulus sebesar 1798,5 MPa. Sedangkan untuk nilai *maximum load* dan *maximum point stress* terendah pada spesimen ke-4 sebesar 298,28 N dan 37,824 MPa dengan modulus sebesar 1410,0 MPa.

4.4.2 Uji Spesimen Lentur *Epoxy* 96%: 4 % TiO₂

Hasil pengujian lentur dengan material *epoxy* 96% ditambahkan TiO₂ 4% diperoleh data pengujian yang ditampilkan pada Tabel 4.11.

70 1 1 4 4 4	TT '1		• •	1	011	1/ 40/ 75'0
Tahal 4 I I	Hacıl	nengillian	1111	lenfur HP	Uh C	$\%: 4\% \text{ TiO}_2$
1 abci 7.11	110011	pengunan	un	ICIII LI	70.	/U. T/U 1102
			J		_	

Test No	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Elastic Modulus (MPa)
1	28,73	7,82	269,26	27,816	2081
2	28,4	7,42	299,59	34,775	2214,3
3	28,63	7,67	250,36	26,979	2102,1
5	28,25	7,59E D J	A J 254,2 N	28,35	2261,6
7	28,43	7,42	260,04	30,153	2380,9
Rata-rata	28,488	7,584	266,69	29,6146	2207,98
stdev	0,1711	0,1529	17,640	2,7820	109,682

Pada tabel 4.11 merupakan hasil pengujian lentur 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 266,69 ± 17,640 N, nilai rata-rata *maximum point stress* 29,6146 ± 2,7820 Mpa, dan nilai rata-rata modulus elastisitas 2207,98 ± 109,682 MPa. Untuk nilai *maximum load* dan *maximum point stress* yang paling tinggi yakni pada spesimen yang ke-2 dengan nilai 299,59 N dan 34,775 MPa dengan modulus sebesar 2214,3 MPa. Sedangkan untuk nilai *maximum load* dan *maximum point stress* terendah

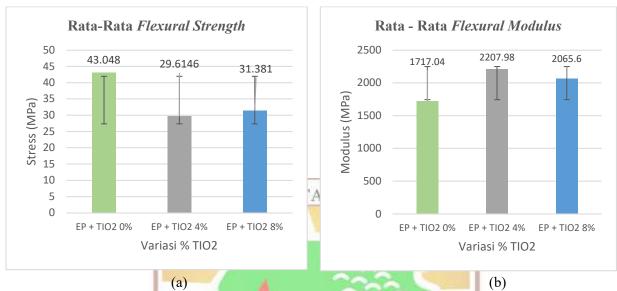
pada spesimen ke-3 sebesar 250,36 N dan 26,979 MPa dengan modulus sebesar 2102,1 MPa.

4.4.3 Uji Spesimen Lentur Epoxy 92%: 8 % TiO2

Hasil pengujian lentur dengan material *epoxy* 92% ditambahkan TiO₂ 8 % diperoleh data pengujian yang ditampilkan pada Tabel 4.12

Test No	Width (mm)	Depth (mm)	Area (mm²)	Maximum Load (N)	Elastic Modulus (MPa)
2	28,08	7,04	256,56	33,459	1967,6
3	27,74	7,18 SIT	AS 229,87	29,175	2069
4	28,1	7,12	260,36	33,173	2093,7
5	27,9	7,09	244,11	31,591	2101,7
6	28,16	6,98	223,04	29,506	2096
Rata-rata	27,996	7,082	242,788	31,3808	2065,6
stdev	0,1546	0,0682	14,5399	1,7863	50,2643

Pada tabel 4.12 merupakan hasil pengujian lentur 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 242,788 ± 14,5399 N, nilai rata-rata *maximum point stress* 31,3808 ± 1,7863 Mpa, dan rata-rata *elastic modulus* 2065,6 ± 50,2643 MPa. Untuk nilai *maximum load* dan *maximum point stress* yang paling tinggi yakni pada spesimen yang ke-4 dengan nilai 260,36 N dan 33,173 MPa dengan nilai modulus sebesar 1967,6 MPa. Sedangkan untuk nilai *maximum load* dan *maximum point stress* terendah pada spesimen ke-3 sebesar 229,87 N dan 29,175 MPa dengan nilai modulus 2069 MPa.


4.4.4 Perbandingan Hasil Uji Lentur Variasi %Volume Komposit

Hasil pengujian lentur rata-rata material *epoxy* dengan penambahan TiO₂ diperoleh data pengujian ditampilkan pada Tabel 4.13.

Tabel 4.13 Hasil pengujian rata-rata uji lentur

Persentase TiO ₂	Maximum	Flexural Strength	Elastic Modulus
	Load (N)	(MPa)	(MPa)
EP + TiO ₂ 0%	$343,668 \pm 33,654$	$43,048 \pm 4,232$	$1717,\!04 \pm 228,\!707$

EP + TiO ₂ 4%	266,69 ± 17,64	$29,615 \pm 2,782$	2207,98 ± 109,682
EP + TiO ₂ 8%	$242,788 \pm 14,54$	$31,38 \pm 1,786$	$2065,\!6 \pm 50,\!264$

Gambar 4.5 Perbandingan rata-rata (a) flexural strength dan (b) flexural modulus

Gambar grafik (a) diatas memperlihatkan bahwa nilai flexural strength komposit mengalami penurunan seiring dengan penambahan kandungan TiO₂ didalam resin epoxy. Penambahan kandungan TiO₂ 4% didalam resin epoxy, mengalami penurunan dari nilai flexural strength epoxy murni sebesar 31,21% sedangkan untuk penambahan TiO₂ 8% nilai flexural strength mengalami penurusan sebesar 27,1%. Ini menunjukan semakin besar kandungan TiO₂ didalam komposit epoxy-TiO₂ mengakibatkan terjadinya penurunan kekuatan flexural strength.

Menurut hasil penelitian Vishnu Prasad et. al (2018), menyatakan penurunan lebih lanjut dalam nanopartikel TiO₂ menyebabkan aglomerasi antara nanopartikel mengakibatkan pengurangan luas permukaan sehingga mengurangi interaksi matriks epoxy, ini akan mengurangi efisiensi transfer beban dari matriks epoxy ke pengisi nanopartikel TiO₂ sehingga mengakibatkan penurunan kekuatan lentur, tetapi untuk kekuatan lentur matriks *epoxy* masih tinggi [29]. Pada Gambar grafik (b) memperlihatkan bahwa terjadinya peningkatan *flexural modulus epoxy* murni dengan penambahan kandungan TiO₂. Untuk kandungan TiO₂ 4% kenaikan *flexural modulus* sebesar 28,59% sedangkan untuk TiO₂ 8% kenaikan *flexural modulus* sebesar 20,3 %. Jika dibandingkan kedua variasi kandungan TiO₂

tersebut, nilai uji lentur TiO₂ 4% nilainya lebih tinggi dibandingkan dengan penambahan kandungan TiO₂ 8%.

4.5 Pengujian Geser (Shear Test)

Pengujian ini dilakukan untuk menguji ketahanan suatu material, dimana material didesak melalui dua arah yang berbeda dengan besar gaya yang sama sampai terjadi deformasi (perubahan bentuk) atau *displacement* (proses pergeseran) dari suatu material. Pada pengujian ini spesimen dibuat dengan menggunakan V *Notch* sebagai takikan. Data pengujian mencakup nilai *maximum point load, maximum point stress, elastic modulus* serta grafik *stress-strain*.

4.5.1 Uji Spesimen Geser 100%: 0 % TiO2

Hasil pengujian geser dengan material *epoxy* tanpa ditambahkan TiO₂ diperoleh data pengujian yang ditampilkan pada Tabel 4.14

	Tabel 4.14 Hasil	pengujian	uji geser	EP 100 %:	0 % TiO ₂
--	------------------	-----------	-----------	-----------	----------------------

Test No	Width (mm)	Depth (mm)	Area (mm²)	Maximum load (N)	Maximum point stress (MPa)	Elastic Modulus (MPa)	Break Point Strain %GL
2	11,48	7,08	81,278	1452,3	17,868	497,14	1,5537
3	11,24	6,50	73,06	1202,8	16,463	624,79	1,2695
4	11,23	6,35	71,311	894,91	12,55	529,05	0,9309
6	10,79	7,36	79,414	1092	13,751	734,2	1,0674
7	10,62	7,32	77,738	896,55	11,533	798,54	0,8795
Rata-rata	11,072	6,922	76,560	A1107,712 _N	14,433	636,744	1,1402
stdev	0,3173	0,4196	3,7840	208,7599	2,1733	115,6769	0,2468

Pada tabel 4.14 merupakan hasil pengujian geser 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata *maximum load* sebesar 1107,712 ± 208,759 N, nilai rata-rata *maximum point stress* 14,433 ± 2,1733 MPa, dan rata-rata *elastic modulus* 636,744 ± 115,6769 MPa. Untuk nilai *maximum load* dan *maximum point stress* yang paling tinggi yakni pada spesimen yang ke-2 dengan nilai 1452,3 N dan 17,868 MPa dengan nilai modulus sebesar 497,14 MPa. Sedangkan untuk nilai *maximum load* dan *maximum point stress*

terendah pada spesimen ke-7 sebesar 896,55 N dan 11,533 MPa dengan nilai modulus sebesar 798,54 MPa.

4.5.2 Uji Spesimen Geser Epoxy 96%: 4 % TiO2

Hasil pengujian geser dengan material *epoxy* 96 % ditambahkan TiO₂ 4% diperoleh data pengujian yang ditampilkan pada Tabel 4.15

Tabel 4.15 Hasil	penguijan uji	geser EP	96%:	4 % TiO ₂
I WOOL INTO I IWSII	pongajian aji	Seper Li	JU /U.	1 /0 1102

Test No	Width (mm)	Depth (mm)	Area (mm²)	Maximum load (N)	Maximum point stress (MPa)	Elastic Modulus (MPa)	Break Point Strain %GL
2	10,63	7,45	79,194	1315,8	16,616	724,56	1,1915
4	10,89	7,52	81,893	1278,5	15,612	833,15	1,3397
5	10,85	7,57	82,135	870,23	10,595	968,54	0,6938
6	10,44	7,46	77,882	865,47	11,113	939,27	0,7497
7	10,94	7,54	82,488	935,77	11,344	1239,5	0,7499
Rata-rata	10,75	7,508	80,7184	1053,154	13,056	941,004	0,9449
Stdev	0,1877	0,0462	1,8377	201,111	2,5286	172,2449	0,2667

Pada tabel 4.15 merupakan hasil pengujian geser 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh rata-rata maximum load sebesar 1053,154 ± 201,111 N, rata-rata maximum point stress 13,056 ± 2,5286 Mpa, dan nilai rata-rata elastic modulus 941,004 ± 172,2449 MPa. Untuk nilai maximum load dan maximum point stress yang paling tinggi yakni pada spesimen yang ke-2 dengan nilai 1315,8 N dan 16,616 MPa dengan modulus sebesar 724,56 MPa. Sedangkan untuk nilai maximum load dan maximum point stress terendah pada spesimen ke-5 sebesar 870,23 N dan 10,595 MPa dengan nilai modulus sebesar 968,54 MPa.

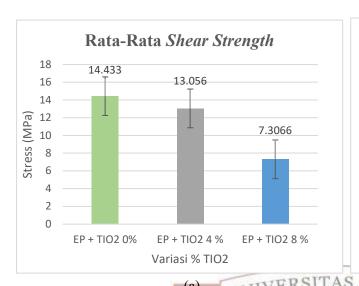
4.5.3 Uji Spesimen Geser Epoxy 92%: 8 % TiO₂

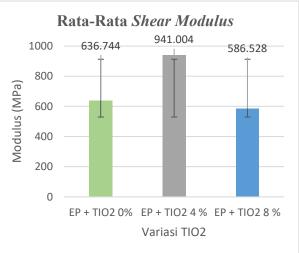
Hasil pengujian geser dengan material *epoxy* 92 % ditambahkan TiO₂ 8% diperoleh data pengujian yang ditampilkan pada Tabel 4.16

Tabel 4.16 Hasil pengujian uji geser EP 92 %: 8 % TiO₂

(mm) (mm) (mm²) load (N) stress (MPa) (MPa) Strain %GL	Test No	Width (mm)	Depth (mm)	Area (mm²)	Maximum load (N)	Maximum point stress (MPa)	Elastic Modulus (MPa)	Break Point Strain %GL
--	---------	------------	---------------	---------------	---------------------	----------------------------	-----------------------------	---------------------------------

1	10,84	7,55	81,842	568,88	6,951	438,61	0,4158
3	9,75	7,67	74,783	732,46	9,795	692,25	0,6967
4	10,42	7,61	79,296	620,49	7,825	519,59	0,4649
5	10,31	7,66	78,975	455,81	5,772	626,87	0,2332
6	10,88	7,68	83,558	517,31	6,191	655,32	0,3611
Rata-rata	10,44	7,634	79,6908	578,99	7,30668	586,528	0,43434
Stdev	0,4115	0,04841	2,9778	94,1862	1,4217	93,6988	0,1522


Pada tabel 4.16 merupakan hasil pengujian geser 5 spesimen dari 7 spesimen yang telah diuji, hasil pengujian diperoleh nilai rata-rata *maximum load* sebesar 578,99 ± 94,1862 N, rata-rata *maximum point stress* 7,306 ± 1,4217 MPa, dan nilai rata-rata *elastic modulus* 586,528 ± 93,6988 MPa. Untuk nilai *maximum load* dan *maximum point stress* yang paling tinggi yakni pada spesimen yang ke-3 dengan nilai 732,46 N dan 9,7945 MPa dengan modulus sebesar 692,25 MPa. Sedangkan untuk nilai *maximum load* dan *maximum point stress* terendah pada spesimen ke-5 sebesar 455,81 N dan 5,772 MPa dengan nilai modulus sebesar 626,87MPa.


4.5.4 Perbandingan Rata-Rata Uji Geser Variasi % volume Komposit

Hasil pengujian geser rata-rata material *epoxy* dengan penambahan TiO₂ diperoleh data pengujian ditampilkan pada Tabel 4.17.

Tabel 4.17 Hasil pengujian rata-rata uji geser

Persentase TiO2	Maximum	Shear Strength	Elastic Modulus
7	Load (N) ED	JAJA(MPa)	(MPa)
EP + TiO ₂ 0%	$1107,712 \pm 208,76$	$14,433 \pm 2,173$	636,744 ± 115,677
EP + TiO ₂ 4 %	$1053,154 \pm 201,111$	$13,056 \pm 2,528$	$941,\!004 \pm 172,\!244$
EP + TiO ₂ 8 %	$578,99 \pm 94,186$	7,30 ± 1,427	$586,528 \pm 94,40$

Gambar grafik (a) diatas memperlihatkan bahwa nilai shear strength komposit mengalami penurunan seiring dengan penambahan kandungan TiO₂ didalam resin epoxy. Penambahan kandungan TiO₂ 4% didalam resin epoxy, mengalami penurunan dari nilai shear strength epoxy murni sebesar 9,54% sedangkan untuk penambahan TiO₂ 8% nilai shear strength mengalami penurunan yang signifikan sebesar 49,375%. Pada Gambar grafik (b) memperlihatkan bahwa terjadinya peningkatan shear modulus epoxy murni dengan penambahan kandungan TiO₂. Pada kandungan TiO₂ 4% shear modulus mengalami kenaikan yang signifikan sebesar 47,78% sedangkan untuk TiO₂ 8% kenaikan shear modulus sebesar 7,88 %. Jika dibandingkan kedua variasi kandungan TiO₂ tersebut, nilai uji geser TiO₂ 4% nilainya lebih tinggi dibandingkan dengan penambahan TiO₂ 8%.

. Perbedaan nilai uji geser dapat disebabkan karena kandungan TiO₂ didalam resin *epoxy*, selain itu pada saat pembebanan komposit pada takikan v terjadinya peningkatan konsentrasi tegangan yang berakibat besarnya kemampuan komposit untuk menahan deformasi plastis, sehingga ketika melewati batas panjang kritisnya nanofiller tidak mampu menahan pembebanan tersebut, selain itu kurang kuatnya ikatan antara *epoxy* dengan nanopartikel TiO₂ ini akan menyebabkan *debounding* (atau lepasnya ikatan antara *filler* dengan matriks), hal ini dapat mempengaruhi hasil pengujian geser.

BAB V PENUTUP

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan diperoleh kesimpulan sebagai berikut:

- 1. Pengaruh penambahan persentase fraksi volume TiO₂ terhadap sifat fisik komposit memberikan dampak yaitu meningkatnya densitas dan porositas sedangkan sifat mekanik komposit mengalami penurunan kekuatan.
- 2. Diperoleh *mechanical properties* komposit EP+TiO₂: Komposit EP+TiO₂ 4%
 - Kekuatan Tarik, nilai modulus tarik serta regangan tarik masing-masing dengan rata-rata 27,53 MPa, 2,38 GPa, 0,95%.
 - Kekuatan Tekan, nilai modulus, regangan masing-masing dengan ratarata 57,57 MPa, 1152,58 MPa, 3,42%
 - Kekuatan Lentur, serta nilai modulus masing-masing dengan rata-rata 29,61 N, 2207,98 MPa
 - Kekuatan Geser, nilai modulus, regangan masing-masing dengan ratarata 13,06 MPa, 941 MPa, 0,94%

Komposit EP+TiO₂ 8%

- Kekuatan Tarik, nilai modulus tarik serta regangan tarik masing-masing dengan rata-rata 20,51 MPa, 2,31 GPa, 0,97%.
- Kekuatan Tekan, nilai modulus, regangan masing-masing dengan ratarata 51,94 MPa, 890,4 MPa, 3,92%
- Kekuatan lentur, serta nilai modulus masing-masing dengan rata-rata 31,38 N, 2265,6 MPa
- Kekuatan geser, nilai modulus, regangan masing-masing dengan ratarata 7,3 MPa, 586,52 MPa, 0,43%
- 3. Hal yang mempengaruhi kekuatan mekanik komposit EP+TiO₂ yakni perbedaan komposisi kandungan TiO₂, homogenitas campuran, porositas, terdapatnya *void*, serta aglomerasi partikel pada komposit.

Tugas Akhir Penutup

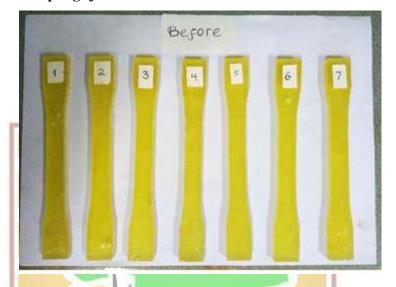
5.2 Saran

Berdasarkan penelitian serta pengujian yang telah dilakukan, penulis menyarankan untuk melakukan investigasi lebih lanjut pada marfologi permukaan komposit dan patahan spesimen menggunakan SEM (*Scanning Elektron Microscope*).

DAFTAR PUSTAKA

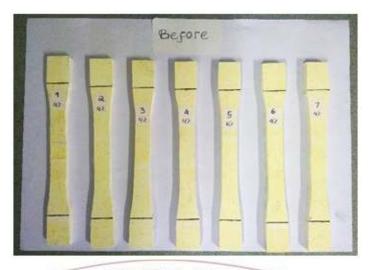
- [1] J. William, Progress In Structural Material For Aerospace System, Acta Materialia, 2003.
- [2] W. D. Callister, Material Science And Engineering an Introduction Seventh Edition, New York: Jhon Willey and Sons Inc, 2007.
- [3] G. M.S., R. S. dan S. Halder, "Facile fabrication of epoxy-TiO2 nanocomposites: A Critical Analysis of TiO2 impact on mechanical properties and toughening mechanisms," *Ultrasinics Sonochemestry*, vol. 2, pp. 861-873, 2018.
- [4] D. Pinto, L. Bernardo, A. Amaro dan S. Lopes, "Mechanical Properties of Epoxy nanocomposites using titanium dioxide as reinforcement- A review," *Contruction and Building Materials*, vol. 1, pp. 506-524, 2015.
- [5] H. W. Mickel, Stress And Analysis Of Fiber Reinfored Composite Material, Singapore: Mc Graw-hill, 1998.
- [6] W. F. Smith, Principle of Materials Science And Engineering, 2nd Edition, Singapore: Mc Graw-Hill, 1996.
- [7] D. Chandramohan, "RETRACTED ARTICLE: Review on Tribological Performance of Natural Fibre-Reinforced Polymer Composites," 20 December 2018. [Online]. Available: https://link.springer.com/article/10.1007/s40735-018-0172-x. [Diakses 12 Oktober 2019].
- [8] K. R, D. H, K. A. K. dan S., "Pembuatan dan Karakterisasi Komposit Polimer Berpenguat Serat Alam," *J. Sains Mater Indonesia*, vol. 3, no. 3, pp. 30-38, 2002.
- [9] O. J, S. F dan L. R, "Analisis Mekanik Material Komposit Serat Sabut Kelapa," *Poros Tek*, vol. 1, no. 1, p. 10, 2013.
- [10] W. A, "Pendahuluan Polimer," 2014.
- [11] M. S., "Composite Manufacturing: Materials, Product, and Process Engineering," Florida, 2001.

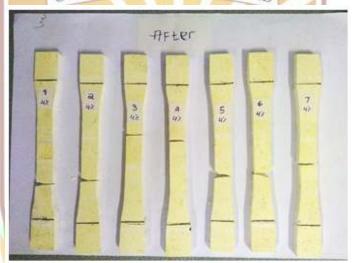
- [12] F. H dan A. N, "Pengaruh Variasi Komposisi komposit resin epoxy/serat," *J. Tek. Mesin*, vol. 4, no. II, pp. 84-89, 2014.
- [13] M. K. Prakash, M. Kumar, R. Kumar dan H. Govindaraju, "Characterization of Mechanical Properties of Epoxy Reinforced with Glass Fiber and Coconut Fiber," *Material today: Proceedings*, vol. XVI, no. 1, pp. 661-667, 2019.
- [14] X. Chen dan S. S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modification And Applications," *Chemical Reviews*, pp. 2891-2959, 2007.
- [15] A. Chatterjee dan M. S. Islam, "Fabrication and Characterization of TiO2-Epoxy Nanocomposite," *Material Science And Engineering*, pp. 574-585, 2008.
- [16] Y. Xiaodong dan C. Xiaobo, "Titanium Dioxide Nanomaterials," Encyclopedia of Inorganic and Bioinorganic Chemistry, vol. 1, no. 1, p. 23, 2015.
- [17] B. Setiadi dan S., "Kajian Sifat Fisis dan Mekanis Material Komposit dengan Matrik AlSiMg Diperkuat dengan Serbuk SiC," *Prosiding SNATIF*, vol. 1, no. 1, pp. 153-160, 2014.
- [18] M. Ridha dan D., "Analisis Densitas, Porositas, dan Struktur Mikro material poroklastik dengan Variasi Lokasi Menggunakan Metode Archimedes dan Software Image-J," *Jurnal Fisika dan Aplikasinya*, vol. XII, no. 3, pp. 1-7, 2016.
- [19] A. Chattterjee dan M. S.Islam, "Fabrication and Characterization of TiO2 Epoxy nanocomposites," *Materials Science and Engineering A 487*, pp. 574-585, 2008.
- [20] L. M. Hamming, R. Qiao dan P. B. Messersmith, "Effects of dispersion and interfacial modification on the macroscale properties of TiO2 Polymer-Matrix nanocomposites," *Composites Science and Technology 09*, pp. 1880-1886, 2019.
- [21] A. Mirmohseni dan Z. S., "Preparation and characterization of an epoxy nanocomposites toughened by a combination of thermoplastic, layered and particulate nano-filler," *Materials and Design 31*, pp. 2699-2706, 2010.


- [22] Y. Zhou, W. Evert dan H. Mahesh, "Effect of particle size and weight fraction on the flexural strength and failure mode of TiO2 particles reinforced epoxy," *Material Letters 64*, pp. 806-809, 2010.
- [23] H. A. Al-Turaif, "Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin," *Progress in Organic Coatings* 69, p. 241–246, 2010.
- [24] siddhartha, A. Patnaik dan A. D. Bhatt, "Mechanical and dry sliding wear characterization of epoxy—TiO2 particulate filled functionally graded composites materials using Taguchi design of experiment," *Material and Design 32*, pp. 615-627, 2011.
- [25] D. ASTM, "Standard Test Method for Tensile Properties Of Plastics," dalam *Annual Book of ASTM Standards*, Philadelphia, USA, American Society for Testing and Materials.
- [26] D. ASTM, "Standard Test Methods For Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials," dalam *Annual Book of ASTM Standards*, Philadelphia, USA, American Society For Testing and Materials (ASTM).
- [27] D. ASTM, "Standart Test Method For Shear Properties Of Polymer Matrix Composite Material By the V-Notched," dalam *Annual Book of ASTM Standards*, Philadelphia, USA, American Society for Testing and Materials (ASTM).
- [28] N. Bezy dan A. Fathima, "International Journal of Engineering Research and General Science," *Effect of TiO2 nanoparticles on Mechanical Properties of Epoxy-Resin System*, vol. III, no. 5, pp. 2091-2730, 2015.
- [29] V. Prasad, M. Joseph, K. Sekar dan M. Ali, "Materials Today Proceedings," Flexural and impact properties of flax fibre reinforced epoxy composite with nano TiO2 addition, vol. 1, no. 5, pp. 24862 24870, 2018.

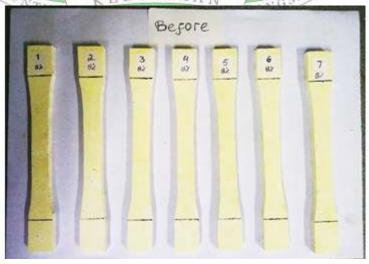
KEDJAJAAN

LAMPIRAN A FOTO SAMPEL KOMPOSIT *EPOXY*-TiO₂

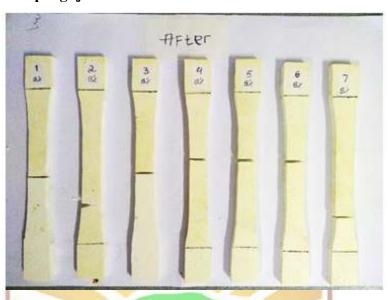

- 1. Pengujian Tarik
 - 1.1 Sampel fraksi volum epoxy 100%, TiO2 0 %
 - Sebelum pengujian


Setelah pengujian

- 1.2 Sampel fraksi volum epoxy 96 %, TiO2 4 %
 - Sebelum pengujian



Setelah Pengujian ERSITAS ANDALAS

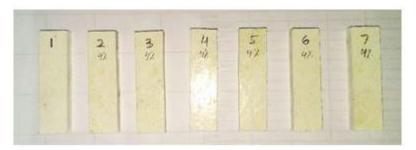


1.3 Sampel fraksi volum epoxy 92 %, TiO2 8 %

• Sebelum pengujian EDJAJAAN

• Setelah pengujian

- 2. Pengujian Tekan
 - 2.1 Sampel fraksi volum epoxy 100%, TiO2 0 %
 - Seb<mark>elum pe</mark>ngujian



Setelah pengujian K E D J A J A A N
 BANGSA

2.2 Sampel fraksi volum epoxy 96 %, TiO2 4 %

Sebelum pengujian

Setelah pengujian

2.3 Sampel fraksi volum epoxy 92 %, TiO2 8 %

Sebe<mark>lum pengujia</mark>n

- 3. Pengujian Lentur
 - 3.1 Sampel fraksi volum epoxy 100%, TiO2 0 %
 - Sebelum pengujian

Setelah pengujian

- 3.2 Sampel fraksi volum epoxy 96%, TiO2 4 %
 - Sebelum pengujian

- 3.3 Sampel fraksi volum epoxy 92%, TiO2 8 %
 - Sebelum pengujian

Setelah pengujian

- 4. Pengujian Geser
 - 4.1 Sampel fraksi volum epoxy 100%, TiO2 0 %
 - Sebelum pengujian


- 4.2 Sampel fraksi volum epoxy 96 %, TiO2 4 %
 - Setelah pengujian

- 4.3 Sampel fraksi volum epoxy 92 %, TiO2 8 %
 - Sebelum pengujian

Setelah pengujian

- 5. Pengujian Density

LAMPIRAN B PERHITUNGAN

• Perhitungan variasi Fraksi Volume

Pada proses pengecoran bahan komposit yang berasal dari resin epoxy yang diperkuat dengan serbuk Titania (TiO₂), diperoleh data sebagai berikut :

Volume Cetakan =
$$p x 1 x t$$

= 400 mm x 400 mm x 7 mm
= $1120000 \text{ mm}^3 = 1120 \text{ cm}^3$

Massa jenis $TiO_2(\rho) = 4,25 \text{ g/cm}^3$

Massa Jenis matriks epoxy = 1,17 g/cm3 DALAS

a) Perhitungan variasi fraksi volume serbuk Titanium Oksida (TiO2) 0 %

Diketahui:

Massa Jenis serbuk
$$TiO_2$$
 = 4,25 g/cm³

Massa Jenis matriks epoxy
$$= 1,17 \text{ g/cm}^3$$

Volume TiO₂
$$V_f = V_c \times \frac{V_c \times Fraksi \ Volume}{100 \%}$$

$$= 1120 \text{ cm}^3 \times 0 \%$$

$$=0 \text{ cm}^3$$

Massa TiO₂
$$M_f = V_f x \rho_f$$

$$= 0 \% x 4,25 \text{ g/cm}^3$$

Volume Epoxy
$$V_m = \frac{V_c \text{ x Fraksi Volume}}{100 \%}$$

$$= \frac{1120 \text{ cm}^3 \text{ x } 100 \%}{100 \%}$$

$$= 1120 \text{ cm}^3$$

Massa Epoxy
$$M_m = V_m \times \rho_m$$

$$= 1120 \text{ cm}^3 \text{ x } 1,17 \text{ g/cm}^3$$

$$= 1310, 4 g$$

b) Perhitungan variasi fraksi volume serbuk Titanium Oksida (TiO2) 4 %

Diketahui:

Variasi fraksa volume serbuk TiO₂ = 4 %

Variasi fraksa volume matriks epoxy = 96 %

Massa Jenis serbuk TiO_2 = 4,25 g/cm³

Massa Jenis matriks epoxy = $1,17 \text{ g/cm}^3$

Volume TiO₂
$$V_f = V_c x Fraksi Volume 100 \%$$

$$= \frac{1120 \text{ cm}^3 \text{ x } 4 \%}{100\%}$$

44,8 cm³ITAS ANDALAS

Massa TiO₂
$$M_f = V_f x \rho_f$$

 $= 44.8 \text{ cm}^3 \text{ x } 4.25 \text{ g/cm}^3$

$$= 190,4 g$$

Volume Epoxy $V_m = V_c x Fraksi Volume$

100 %

 $= 1120 \text{ cm}^3 \text{ x } 96 \%$ 100 %

 $= 1075,2 \text{ cm}^3$

Massa Epoxy $M_m = V_m \times \rho_m$

 $= 1075,2 \text{ cm}^3 \text{ x } 1,17 \text{ g/cm}^3$

= 1257,984 g

c) Perhitungan variasi fraksi volume serbuk Titanium Oksida (TiO2) 8 %

Variasi fraksa volume serbuk TiO₂ = 8 %

Variasi fraksa volume matriks epoxy = 92 %

Massa Jenis serbuk TiO_2 = 4,25 g/cm³

Massa Jenis matriks epoxy = $1,17 \text{ g/cm}^3$

Volume TiO₂
$$V_f = \frac{V_c x Fraksi Volume}{100 \%}$$

$$= \frac{1120 \text{ cm}^3 \text{ x } 8 \%}{100 \%}$$

 $= 89,6 \text{ cm}^3$

Massa TiO₂
$$M_f = V_f x \rho_f$$

 $= 89,6 \text{ cm}^3 \text{ x } 4,25 \text{ g/cm}^3$
 $= 380,8 \text{ g}$
Volume Epoxy $V_m = \frac{V_c \text{ x Fraksi Volume}}{100 \%}$
 $= \frac{1120 \text{ cm}^3 \text{ x } 92 \%}{100 \%}$
 $= 1030,4 \text{ cm}^3$
Massa Epoxy $M_m = V_m \text{ x } \rho_m$

 $= 1030,4 \text{ cm}^3 \text{ x} \cdot 1,17 \text{ g/cm}^3 LAS$ = 1205,568 g

• Perhitungan Pengujian Porositas Komposit

Persamaan yang digunakan ini adalah

•
$$\emptyset = \frac{\rho_{teoritis} - \rho_{aktual}}{\rho_{teoritis}} \times 100 \%$$

Dimana:

•
$$\rho_{\text{teoritis}} = \rho_{ep} \cdot V_{ep} + \rho_{TiO2} \cdot V_{TiO2}$$

•
$$\rho_{\text{aktual}} = \frac{Berat \ diudara \ (g)}{Berat \ Diudara \ (g) - Berat \ dalam \ air \ (g)} \ \chi \ \rho_{\text{ai}}$$

a) Spesimen dengan variasi Epoxy 100 % tanpa ditambah TiO2

$$\rho_{\text{teoritis}} = (\rho_{ep} \cdot V_{ep}) + (\rho_{TiO2} \cdot V_{TiO2})$$

$$= (1,17 \text{ g/cm}^3 \cdot 1) + (4,25 \text{ g/cm}^3 \cdot 0)$$

$$= 1,17 \text{ g/cm}^3$$

$$\rho_{\text{aktual}} = \frac{Berat \ diudara \ (g)}{Berat \ Diudara \ (g) - Berat \ dalam \ air \ (g)} \ x \ \rho_{\text{air}}$$

$$= 1,111 \text{ g/cm}^3 \text{ (densitometer)}$$

$$Porositas \emptyset = \left(1 - \frac{\rho_{aktual}}{\rho_{teoritis}}\right) \times 100 \%$$

$$= \left(1 - \frac{1,111 \text{ g/cm}^3}{1,17 \text{ g/cm}^3}\right) \times 100\%$$

$$= 5.043 \%$$

b) Spesimen dengan variasi Epoxy 96 %: 4 % TiO₂

c) Spesimen dengan variasi Epoxy 92 %: 8% TiO₂

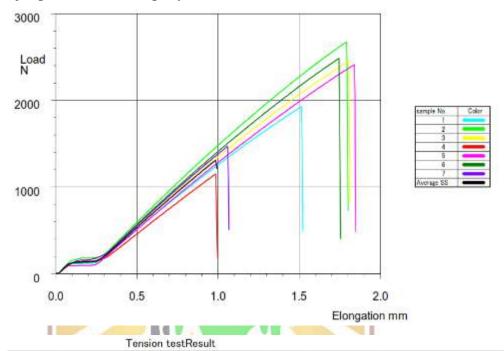
$$\rho_{\text{teoritis}} = (\rho_{ep} \cdot V_{ep}) + (\rho_{TiO2} \cdot V_{TiO2})$$

$$= (1,17 \text{ g/cm}^3 \cdot 0,92) + (4,25 \text{ g/cm}^3 \cdot 0,08)$$

$$= 1,4164 \text{ g/cm}^3$$

$$\rho_{\text{aktual}} = \frac{Berat \ diudara \ (g)}{Berat \ Diudara \ (g) - Berat \ dalam \ air \ (g)} \times \rho_{\text{air}}$$

$$= 1,309 \text{ g/cm}^3 \text{ (densitometer)}$$
Porositas $\emptyset = (1 - \frac{\rho_{aktual}}{\rho_{teoritis}}) \times 100 \%$

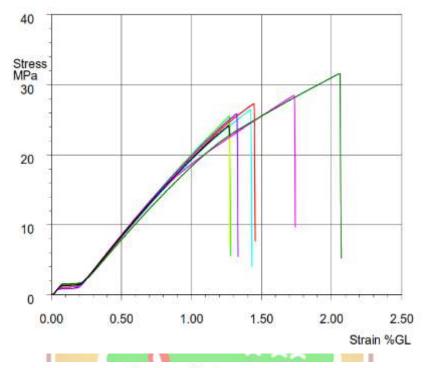

$$= (1 - \frac{1,309 \text{ g/cm}^3}{1,4164 \text{ g/cm}^3}) \times 100\%$$

LAMPIRAN C

HASIL PENGUJIAN SAMPEL KOMPOSIT

1. Pengujian Tarik (Tensile Test)

a) Uji Spesimen Tarik Epoxy 100 %



Machine name	RTF	niated in example		Test type	Tension		
Strain input 1		Not used T		Test speed	5.0 mm/min		
Chart speed OFF	M		Machine rigidity	0	mm/kgf		
Point data(Load)		0 0	0	Point data(Elong)	0	0	0
N N		0 0	0	mm	0	0	0
Elastic modulus anal.	Interval	0.1	0.3	Initial sample length	Distance	115 mm	
Strain	Pitch	0.001	%GL	Origin of elongation	Start		
Elong adjust	ust No		Break point measuren	0.5	N		
Save SS curve	Yes						

Test date	2020/02/17	Temperature	22 C
Humidity	47.7 %RH	Sample name	Epoxy 100% + Hardener
Lot No.	05, T085	Preparation	
Operator	Rezky	User	Rahmat
Comment 1	ASTM D638	Comment 2	

TestID=725	Width	Thickness	Sectional ar	Maximum poin Load	Maximum poin Stress	Elastic modu	Break point Strain
Test No	mm	mm	mm2	N	MPa	GPa	%GL
1	13.600	6.5700	89.352	1926.5	21.561	1.9784	1.3157
2	13.820	7.0500	97.431	2672.4	27.428	2.0916	1.5577
3	13.770	6.8100	93.774	2445.5	26.079	2.1210	1.5677
4	13.810	6.2100	85.760	1146.9	13.373	1.8436	0.8550
5	13.830	6.5000	89.895	2409.8	26,807	2.1288	1.5994
6	13.620	6.8800	93.706	2481.5	26.482	2.2026	1.5176
7	13.750	6.7000	92.125	1468.5	15.940	2.1457	0.9199
Average	13.743	6.6743	91.720	2078.7	22.524	2.0731	1.3333
Standard Dwylation (1)	0.0952	0.2767	3.7727	580.62	5.7549	0.1221	0.3189

b) Uji Spesimen Tarik Epoxy 96 %: 4 % TiO₂

semple No.	Color
- 1	
2	
. 3	
4	_
5	_
- 6	
7	-
Average SS	_

Tension testResult

Average

Standard Deviations-1

0.3983

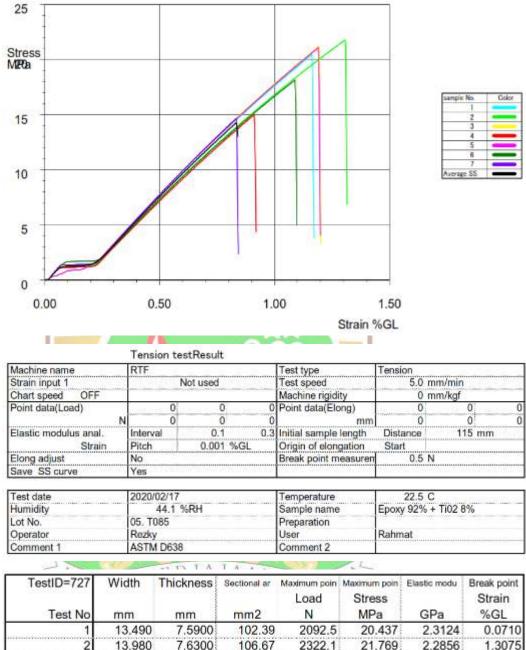
0.1037

Machine name	RTF		Test type	Tension					
Strain input 1	input 1 Not used		Test speed	5.0 mm/min					
Chart speed OFF	N		Machine rigidity	0 mm/kgf					
Point data(Load)		0		0	Point data(Elong)	0	0		0
AT A THUS THE PARTY OF THE PART	N	0	0	0	mm	0		0	0
Elastic modulus anal.	200	Interval	0.1	0.3	Initial sample length	Distance	1	15 mm	20/2
Strain		Pitch	0.001	%GL	Origin of elongation	Start		11 SAL U 11 PA	001757000
Elong adjust No		Break point measurem	0.5	N	:O(U=0, 10, 10)				
Save SS curve		Yes							88288

Test date	2020/02/17	Temperature	22.5 C
Humidity	46.1 %RH	Sample name	Epoxy 96% + Ti02 4%
Lot No.	05. T085	Preparation	***************************************
Operator	Rezky	User	Rahmat
Comment 1	ASTM D638	Comment 2	

TestID=726 Width Thickness Sectional ar Maximum poin Maximum poin Elastic modu Break point Load Stress Strain MPa GPa %GL Test No mm2 N mm mm 7.8700 2824.9 26.374 2.3215 1.4212 13.610 107.11 2 0.0764 14.210 7.7900 110.70 2818.9 25.466 2.4863 3 14.680 2.5445 0.0680 7.7000 113.04 2781.0 24.603 14.280 7.8500 112.10 3059.3 27.291 2.4017 1.4465 5 14.450 7.6900 2.5291 1.7323 111.12 3161.8 28.454 118.73 6 14.860 7.9900 2.2027 0.0877 3748.7 31.573 14.320 7.8000 111.70 2886.0 25.838 2.5829 1.3245 14.344 27.085 7.8129 112.07 3040.1 2.4384 0.8795

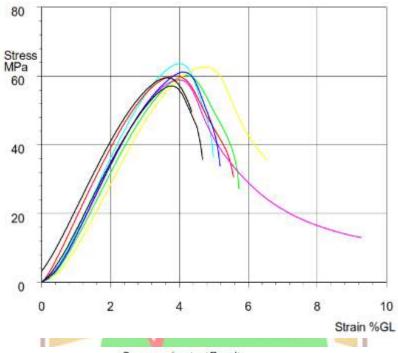
3.4841


342.39

2.3417

0.7606

0.1373

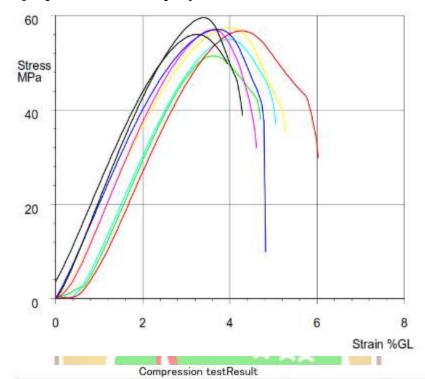

c) Uji Spesimen Tarik Epoxy 92 %: 8 % TiO2

Test No	mm	mm	mm2	Load N	Stress	GPa	Strain %GL
1	13,490	7.5900	102.39	2092.5	20.437	2.3124	0.0710
2	13.980	7.6300	106.67	2322.1	21.769	2.2856	1.3075
3	13.900	7.4800	103.97	2200.4	21.163	2.2095	1.1942
4	13.960	7.6400	106.65	1598.4	14.987	2.2389	0.9115
5	13.780	7.5300	103.76	2186.6	21.073	2.3241	1.1914
6	13.940	7.6000	105.94	1920.7	18.129	2.1533	1.0896
7	13.930	7.5100	104.61	1530.5	14.630	2.3208	0.8347
Average	13.854	7.5686	104.86	1978.7	18.884	2.2635	0.9428
Standard Devlation(n-1)	0.1734	0.0620	1.6237	308.77	3.0158	0.0652	0.4188

2. Pengujian Tekan (Compress Test)

a) Uji Spesimen Tekan Epoxy 100%

sample No.	Calar
1	_
2	
3	
- 4	
. 5	
- 6	
1	
Average SS	_

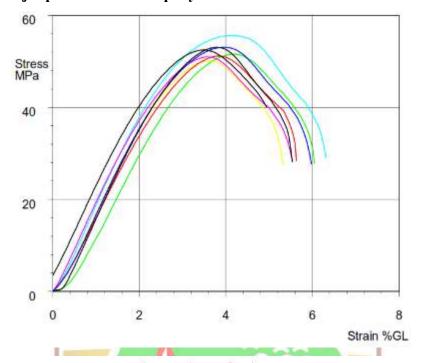

Com	nunnation	testResult	
Com	pression	testresun	

Machine name	RTF		Test ty	Test type T		Tension Compression			
Strain input 1	Not	used	Test sp	peed	2.0 mm/min				
Chart speed OFF		and the second second	Machin	Machine rigidity	0 mm/kgf				
Point data(Load)	0	0	0 Point of	lata(Disp)	0	0	0		
N	0	0	0	mm	0	0	0		
Elastic modulus anal.	Interval	1 10	0 Initial s	sample length	Distance	12.7 mm			
Load	Pitch	5 N	Origin	of elongation	Init. load	0.3 %RO			
Elong adjust	No B		Break	point measuren	0.5	N			
Save SS curve	Yes								

Test date	2020/02/12	Temperature	25.4 C
Humidity	51.4 %RH	Sample name	Epoxy 100% + TiO2 0%
Lot No.	10.C056	Preparation	Mech. Stirer
Operator	Rezky, Ryan, Afid	User	Rahmat
Comment 1	ASTM D695	Comment 2	

TestID=710	Width	Depth	Sectional ar	Maximum poin Load	Maximum poin Stress	Elastic modu	Break point Strain
Test No	mm	mm	mm2	N	MPa	MPa	%GL
1	13.800	7.2900	100.60	6392.0	63.538	926.92	3.6905
2	13.900	7.3800	102.58	6162.4	60.073	512.91	3.8041
3	13.630	7.0900	96.637	6046.8	62.573	606.60	4.2049
4	13.750	7.3500	101.06	6063.5	59.997	1062.9	3.6447
5	13.760	7.2300	99.485	5854.7	58.850	656.80	3.5913
6	13.710	7.1400	97.889	5980.0	61.089	487.93	3.7530
7	13.860	7.2700	100.76	5747.0	57.035	865.78	3.4538
Average	13.773	7.2500	99.860	6035.2	60.451	731.40	3.7346
Standard Deviation(n-1)	0.0841	0.0978	1.8759	193.88	2.0359	205.05	0.2190

b) Uji Spesimen Tekan Epoxy 96 %: 4 % TiO₂


sample No.	Color
1.0	
2	
3	
4	
5	
- 6	
7	_
Average SS	

Machine name	RTF	RTF		Test type	Tension Compression		
Strain input 1		Not used T		Test speed	2.0 mm/min		
Chart speed OFF				Machine rigidity	0 mm/kgf		
Point data(Load)		0 0	0	Point data(Disp)	0	0	0
, , ,		0 0	0	mm	0	0	0
Elastic modulus anal.	Interval	1	100	Initial sample length	Distance	13.7414 mm	
Load	Pitch	5	N	Origin of elongation	Init, load	0.3 %RO	
Elong adjust	No	No E		Break point measuren	0.5 1	N	
Save SS curve	Yes	res					

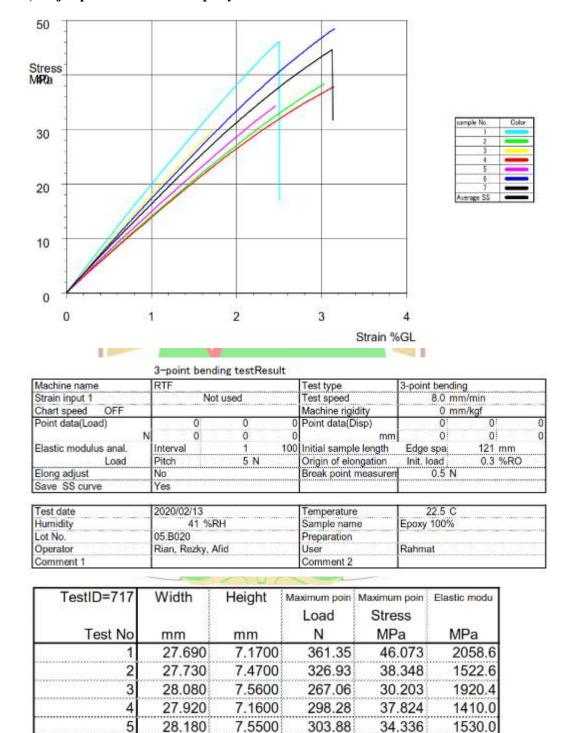
Test date	2020/02/12	Temperature	25.3 C
Humidity	45.1 %RH	Sample name	Epoxy 96% + TiO2 4%
Lot No.	10.C057	Preparation	
Operator	Rezky, Ryan, Afid	User	Rahmat
Comment 1		Comment 2	

TestID=711 Test No	Width	Depth	Sectional ar	Maximum poin Load N	Maximum poin Stress MPa	Elastic modu MPa	Break point Strain %GL
1	13.710	6.6800	91.583	5034.4	54.971	737.01	3,3159
2	13.820	7.0000	96.740	4979.2	51.469	354.90	2.9261
3	13.930	7.0000	97.510	5600.2	57.432	916.53	3.6623
4	13.680	6.9000	94.392	5358.0	56.764	119.96	3.5042
5	13.630	6.7700	92.275	5261.6	57.021	647.64	3.2304
6	13.670	6.9800	95.417	5444.8	57.064	1691.4	3.5560
7	13.750	6.8400	94.050	5603.5	59.580	1316.4	3.1879
Average	13.741	6.8814	94.567	5326.0	56.329	826.26	3.3404
Standard Devlation(n-1)	0.0957	0.1152	2.0199	232.00	2.3437	501.10	0.2344

c) Uji Spesimen Tekan Epoxy 92 %: 8 % TiO2

sample No.	Color
1	
2	
3	
- 4	_
- 5	
- 6	
·	
Average SS	_

Compression	testResul	t
-------------	-----------	---


Machine name	RTF		Test type	Tension Co	mpression	
Strain input 1	No	Not used 1		Test speed	2.0 mm/min	
Chart speed OFF		***************************************		Machine rigidity	0	mm/kgf
Point data(Load)	0	0	0	Point data(Disp)	0	0
N	0	0	0	mm	0	0
Elastic modulus anal.	Interval	1	100	Initial sample length	Distance	12.7 mm
Load	Pitch	5 N		Origin of elongation	Init. load	0.3 %RO
Elong adjust	No		oo oo oo oo oo	Break point measuren	0.5	N
Save SS curve	Yes	Yes				

Test date	2020/02/12	Temperature	24 C
Humidity	40.4 %RH	Sample name	Epoxy 92% + TiO2 8%
Lot No.	10.C058	Preparation	The second secon
Operator	Rezky, Ryan, Afid	User	Rahmat
Comment 1		Comment 2	

TestID=712	Width	Depth	Sectional ar	Maximum poin Load N	Maximum poin Stress MPa	Elastic modu MPa	Break point Strain %GL
1	13.750	7.0000	96.250	5349.9	55.583	1047.7	3.9192
2	13.790	6.9500	95.840	CONTRACTOR CONTRACTOR	51.541	encite contract to prevent	5.5352
3	13.810	6.9200	95.565	4784.6	50.066	945.92	3.3105
4	13.810	7.1600	98.880	5055.4	51.126	1012.8	3.5814
5	13.610	7.1100	96.767	4928.8	50.934	1463.1	3.3772
6	13.930	7.1300	99.321	5271.1	53.072	968.78	3.6929
7	13.620	7.0500	96.021	5093.1	53.042	357.54	3.4132
Average	13.760	7.0457	96.949	5060.4	52.195	920.80	3.8328
Standard Deviation(n-1)	0.1049	0.0857	1.4081	184.11	1.7178	318.98	0.7216

3. Pengujian Lentur (Three Point Bending Test)

a) Uji Spesimen Lentur Epoxy 100%

b) Uji Spesimen Lentur Epoxy 96 %: 4 % TiO2

28.450

27.750

27.971

0.2809

7.2400

7.0000

7.3071

0.2194

397.69

334.09

327.04

43.164

48.401

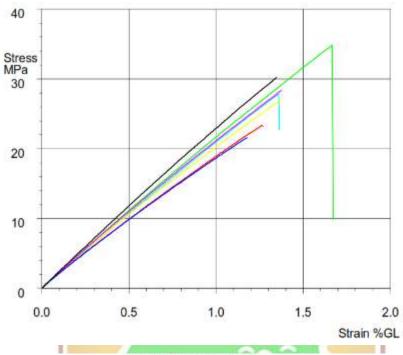
44.594

39.968

6.6345

6

Average


Standard Deviation(n-1

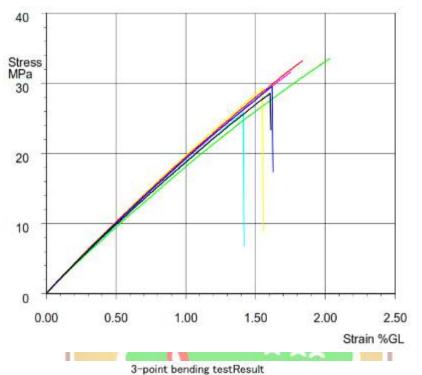
1798.5

1795.5

1719.4

237.30

sample No	Color
1	_
2	_
3	_
4	
5	
6	
7	_
Average SS	_

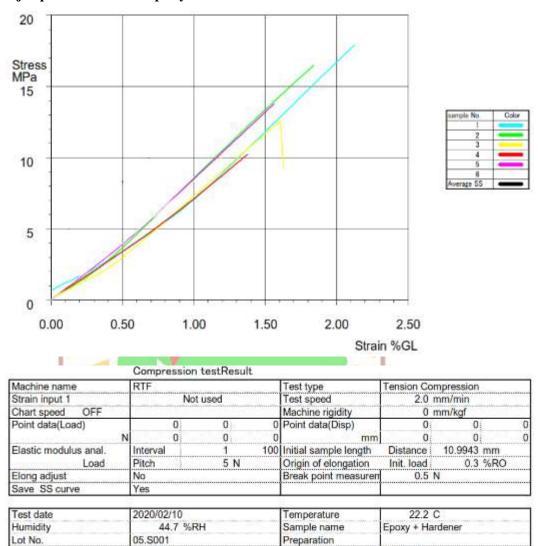

		NAME OF TAXABLE PARTY.
3-point	bending	testResult

Machine name	RTF T		Test type	3-point bending	9	
Strain input 1	Not used Te		Test speed	5.0 mm	/min	
Chart speed OFF			Machine rigidity	0 mn	n/kgf	
Point data(Load)	0	0 (Point data(Disp)	0	0	0
N	0 0 0 mm	0	0	0		
Elastic modulus anal.	Interval	1 100	Initial sample length	Edge spa	121 mm	
Load	Pitch	5 N	Origin of elongation	Init. load	0.3 %RO	
Elong adjust	No		Break point measurem	0.5 N		
Save SS curve	Yes					

Test date	2020/02/13	Temperature	22.5 C
Humidity	41 %RH	Sample name	Epoxy 96% + TiO2 4%
Lot No.	05.B020	Preparation	
Operator	Rian, Rezky, Afid	User	Rahmat
Comment 1		Comment 2	

TestID=718	Width	Height	Maximum poin Load	Maximum poin Stress	Elastic modu
Test No	mm	mm	N	MPa	MPa
1	28.730	7.8200	269.26	27.816	2081.0
2	28.400	7.4200	299.59	34.775	2214.3
3	28.630	7.6700	250.36	26.979	2102.1
4	28.150	7.7300	216.10	23.318	1998.2
5	28.250	7.5900	254.20	28.350	2261.6
6	28.330	7.7100	199.82	21.536	1987.2
7	28.430	7.4200	260.04	30.153	2380.9
Average	28.417	7.6229	249.91	27.561	2146.5
Standard Deviation(n-1)	0.2043	0.1547	33.204	4.3607	145.12
Max.	28.730	7.8200	299.59	34.775	2380.9

c) Uji Spesimen Lentur Epoxy 92 %: 8 % TiO2


Machine name					Test type	3-point bending 5.0 mm/min			
Strain input 1					Test speed				
Chart speed OFF					Machine rigidity		0 mm/kgf		
Point data(Load)		0	0	0	Point data(Disp)	0	0	0	
N		0	0	0	mm	0	0	0	
Elastic modulus anal.	Interval		1	100	Initial sample length	Edge spa	121 mm		
Load	Pitch	1	5 N		Origin of elongation	Init. load	0.3 %RC)	
Elong adjust	No				Break point measuren	0.5 N			
Save SS curve Yes		********							

Test date	2020/02/13	Temperature	22.5 C
Humidity	41 %RH	Sample name	Epaxy 92% + TiO2 8%
Lot No.	05.B020	Preparation	The state of the s
Operator	Rian, Rezky, Afid	User	Rahmat
Comment 1		Comment 2	

TestID=720	Width	Height	Maximum poin Load	Maximum poin Stress	Elastic modu
Test No	mm	mm	N	MPa	MPa
1	27.780	7.2300	205.96	25.743	2047.2
2	28.080	7.0400	256.56	33.459	1967.6
3	27.740	7.1800	229.87	29.175	2069.0
4	28.100	7.1200	260.36	33.173	2093.7
5	27.900	7.0900	244.11	31.591	2101.7
6	28.160	6.9800	223.04	29.506	2096.0
7	27.590	6.8900	205.79	28.517	2074.8
Average	27.907	7.0757	232.24	30.166	2064.3
Standard Deviation(n-1)	0.2144	0.1167	22.373	2.7574	46.643
Max.	28.160	7.2300	260.36	33.459	2101.7

4. Pengujian Geser (Shear Test)

a) Uji Spesimen Geser Epoxy 100%

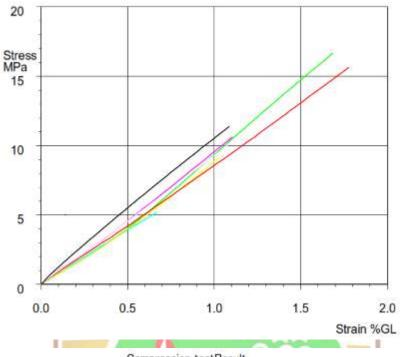
TestID=701 Test No	Width	Depth	Sectional ar	Maximum poin Load N	Maximum poin Stress MPa	Elastic modu	Break point Strain %GL
1	11.480	7.0800	81.278	1452.3	17.868	497.14	1.5537
2	11.240	6.5000	73.060	1202.8	16.463	624.79	1.2695
3	11.230	6.3500	71,311	894.91	12.550	529.05	0.9309
4	10.920	7.4100	80.917	826.62	10.216	632.82	0.8051
5	10.790	7.3600	79.414	1092.0	13.751	734.20	1.0674
6	10.620	7.3200	77.738	896.55	11.533	798.54	0.8795
Average	11.047	7.0033	77,286	1060.9	13.730	636.09	1.0844
Standard Deviation(n-1)	0.3233	0.4645	4.1815	238.22	2.9383	115.69	0.2823

User

Comment 2

Lathifa

D5379


Operator

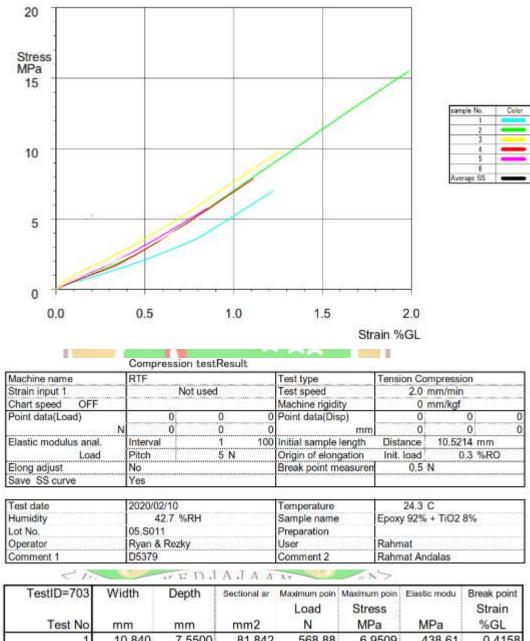
Comment 1

Rahmat

Rahmat Andalas

b) Uji Spesimen Geser Epoxy 96%: 4% TiO₂

sample No.	Color
	_
2	_
3	-
- 4	
5	
6	
7	_
Average SS	_


Compression testResult

Machine name	RTF		Test type	Tension Compression		20,000	
Strain input 1			Test speed	2.0 mm/min			
Chart speed OFF	W. 11800 1000 1000 1000 1000	Machine rigidi		0	0 mm/kgf		
Point data(Load)	0	0 0	Point data(Disp)	0	0	0	
N	0	0 0	mm	0	0	0	
Elastic modulus anal.	Interval	1 100	Initial sample length	Distance	10.7014 mm		
Load	Pitch	5 N	Origin of elongation	Init, load	0.3 %RO		
Elong adjust	djust No		Break point measurem	0.5	N		
Save SS curve Yes					100		

Test date	2020/02/10	Temperature	23.2 C
Humidity	45.6 %RH	Sample name	Epoxy 96% + TiO2 4%
Lot No.	05.S011	Preparation	
Operator	Ryan & Rezky	User	Rahmat
Comment 1	D5379	Comment 2	Rahmat Andalas

TestID=702 Test No	Width	Depth	Sectional ar	Maximum poin Load N	Maximum poin Stress MPa	Elastic modu MPa	Break point Strain %GL
1	10.530	7.5700	79.712				0.1805
2	10.630	7.4500	79.194	COLUMN COLUMN CONTRACTOR COLUMN	16.616		1.1915
3	10.630	7.5100	79.831	730.00	9.1442	761.59	0.5422
4	10.890	7.5200	81.893	1278.5	15.612	833.15	1.3397
5	10.850	7.5700	82.135	870.23	10.595	968,54	0.6938
6	10.440	7.4600	77.882	865.47	11.113	939.27	0.7497
7	10.940	7.5400	82.488	935.77	11.344	1239.5	0.7499
Average	10.701	7.5171	80.448	915.51	11.372	898.83	0.7782
Standard Deviation(n-1)	0.1926	0.0482	1.7402	312.03	3.8616	173.92	0.3890

c) Uji Spesimen Geser Epoxy 92%: 8% TiO2

TestID=703	Width	Depth	Sectional ar	Maximum poin Load	Maximum poin Stress	Elastic modu	Break point Strain
Test No	mm	mm	mm2	N	MPa	MPa	%GL
1	10.840	7.5500	81.842	568.88	6.9509	438.61	0.4158
2	10.870	7.6500	83.155	1283.6	15.436	518.39	1.3662
3	9.7500	7.6700	74.783	732.46	9.7945	692.25	0.6967
4	10.420	7.6100	79.296	620.49	7.8250	519.59	0.4649
5	10.310	7.6600	78.975	455.81	5.7716	626.87	0.2332
6	10.880	7.6800	83.558	517.31	6.1910	655.32	0.3611
Average	10.512	7.6367	80.268	696.42	8.6615	575.17	0.5897
Standard Deviation(n-1)	0.4475	0.0489	3.2970	302.68	3.6128	97.740	0.4098