BAB I

PENDAHULUAN

1.1 Latar Belakang

Suatu persamaan diferensial adalah suatu persamaan yang memuat turunan-turuna<mark>n dari satu atau</mark> lebih variabel t<mark>erik</mark>at terhadap satu atau lebih variabel bebas<mark>. Suatu</mark> sistem persamaan diferensia<mark>l adala</mark>h kumpulan dari persamaan diferensial. Berdasarkan kelinierannya, sistem persamaan diferensial terbagi atas sistem persamaan diferensial linier dan sistem persam<mark>a</mark>an d<mark>iferensi</mark>al non linier. Bentuk u<mark>mum d</mark>ari sistem persamaan diferensial linier adalah sebagai berikut [2]:

$$D_t \mathbf{x}(t) = A\mathbf{x}(t) + \mathbf{u}(t), \quad \mathbf{x}(0) = \mathbf{x}_0$$
(1.1.1)

dimana $D_t = \frac{d}{dt}, A \in \mathbb{R}^{n \times n}, \ \mathbf{x}(t) \in \mathbb{R}^n \ \mathrm{dan} \ \mathbf{u}(t) \in \mathbb{R}^n.$

Persamaan diferensial *fractional* merupakan persamaan diferensial dengan orde riil positif. Bentuk umum dari sistem persamaan diferensial *fractional* linier adalah sebagai berikut [5]:

$$D_t^{\alpha} \mathbf{x}(t) = A\mathbf{x}(t) + \mathbf{u}(t), \quad \mathbf{x}(0) = \mathbf{x}_0$$
 (1.1.2)

dimana $D_t^{\alpha}=\frac{d^{\alpha}}{dt^{\alpha}}$ menyatakan operator turunan fractional. Ada beberapa definisi dari operator turunan fractional D_t^{α} . Salah satu yang cukup dikenal

adalah operator turunan fractional Caputo, yang didefinisikan sebagai [5]:

$$D_t^{\alpha} \mathbf{x}(t) = \frac{1}{\Gamma(k-\alpha)} \int_0^t \frac{D_{\tau}^{(k)} \mathbf{x}(\tau)}{(t-\tau)^{\alpha+1-k}} d\tau$$
 (1.1.3)

dimana $k-1 < \alpha < k, k \in \mathbb{N}$. Solusi dari sistem (1.1.2) dengan D_t^{α} adalah operator turunan Caputo telah diberikan dalam literatur [5].

Dalam skripsi ini, diselesaikan sistem persamaan diferensial fractional (1.1.2) dalam artian $D_t^{\alpha}\mathbf{x}(t) = \begin{bmatrix} D_t^{\alpha_1}x_1(t) & D_t^{\alpha_2}x_2(t) & \dots & D_t^{\alpha_n}x_n(t) \end{bmatrix}^T$ dimana $D_t^{\alpha_i}$, i=1,2,...,n, α_i tak perlu sama dengan α_j untuk j=1,2,...,n adalah operator turunan fractional Caputo dengan menggunakan transformasi Laplace. Skripsi ini mengelaborasi beberapa informasi yang disampaikan dalam literatur [6].

1.2 Rumusan Masalah

Dalam skripsi ini, akan diselesaikan sistem persamaan diferensial fractional orde berbeda yang berbentuk [6]:

$$D_t^{\alpha} \mathbf{x}(t) = A\mathbf{x}(t), \quad \mathbf{x}(0) = \mathbf{x}_0 \tag{1.2.4}$$

dengan $D_t^{\alpha} \mathbf{x}(t) = \begin{bmatrix} D_t^{\alpha_1} x_1(t) & D_t^{\alpha_2} x_2(t) & \dots & D_t^{\alpha_n} x_n(t) \end{bmatrix}^T$, $0 < \alpha_i \leq 1$, dimana $D_t^{\alpha_i}$, $i = 1, 2, \dots, n$ adalah operator turunan fractional Caputo dengan menggunakan transformasi Laplace.

1.3 Batasan Masalah

Batasan masalah dalam skripsi ini dalam menyelesaikan sistem persamaan (1.2.4) dengan $0<\alpha_i\le 1$ dan i=1,2,..,n.

1.4 Tujuan Penulisan

Tujuan dari penulisan skripsi ini adalah untuk menentukan penyelesaian dari sistem persamaan (1.2.4) dengan menggunakan transformasi Laplace.

1.5 Sistematika Penulisan

Sistematika penulisan yang digunakan dalam skripsi ini adalah sebagai berikut : Bab I Pendahuluan, yang memberikan gambaran singkat tentang latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, dan sistematika penulisan. Bab II Landasan teori, yang membahas mengenai teori-teori dasar sebagai acuan yang digunakan dalam pembahasan. Bab III berisikan pembahasan tentang penyelesaian sistem persamaan diferensial fractional linier. Bab IV berisikan kesimpulan dan saran dari penulisan tugas akhir ini.