BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Adapun kesimpulan dari penelitian ini adalah

Berdasarkan hasil dan analisa yang telah dilakukan, maka dapat disimpulkan:

- 1. Pengendali yang dirancang telah memenuhi kriteria yang telah ditetapkan. Dengan menggunakan metoda Linear Quadratic Gaussian Loop Transfer Recovery (LQG-LTR), sistem kendali frekuensi pada sistem tenaga listrik untuk pemodelan non reheat, reheat, dan hidrolik menunjukkan hasil yang lebih baik jika dibandingkan dengan performansi tanpa metoda LQG dan LQG-LTR. Hal ini dibuktikan dengan telah terpenuhinya kriteria performansi sistem dalam domain frekuensi.
- 2. Selain performansi, kestabilan dan kekokohan sistem kendali frekuensi dengan metoda LQG dan LQG-LTR menunjukkan hasil yang lebih stabil dan lebih kokoh jika dibandingkan dengan performansi tanpa metoda LQG dan LQG-LTR. Hal ini dibuktikan dengan telah terpenuhinya kriteria kestabilan dan kekokohan yang telah ditetapkan.
- 3. Untuk sistem kendali *Load Frequency Control* (LFC) dengan metode LQG dan LQG-LTR keseluruhan data yang didapatkan telah memenuhi kriteria perancangan pengendali LFC. Namun setelah dicoba berulang kali terhadap pemodelan Non Reheat terdapat 2 kriteria yang tidak memenuhi kriteria perancangan. Kriteria dalam domain waktu untuk nilai kesalahan keadaan mantap baik itu menggunakan metode LQG ataupun LQG-LTR, dan kriteria yang tidak memenuhi selanjutnya adalah nilai performansi dalam domain waktu untuk nilai maksimum overshoot dari pemodelan Non Reheat menggunakan metode LQG.

5.2 Saran

Adapun saran yang didapatkan dalam tugas akhir ini adalah pemilihan nilai bobot Q dan R dilakukan dengan cara trial and error, yang membutuhkan waktu yang cukup lama untuk mendapatkan hasilnya. Oleh karena itu, diperlukan pengembangan metoda yang lebih baik untuk mendapatkan nilai bobot Q dan R tersebut.

