BAB V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Penelitian yang telah dilakukan menghasilkan beberapa kesimpulan utama yang menggambarkan capaian terhadap tujuan penelitian, yaitu sebagai berikut:

- 1. Telah berhasil dirancang bangun *greenhouse* tipe *gable* dengan sistem *tower hydroponic* sebanyak tiga set (total 624 lubang tanam) yang efisien terhadap penggunaan lahan dan sesuai untuk lingkungan perkotaan.
- 2. Sistem Pembangkit Listrik Tenaga Surya (PLTS) berkapasitas 550 Wp berhasil diintegrasikan dengan greenhouse untuk menyuplai seluruh kebutuhan listrik operasional, seperti pompa, exhaust fan, dan misting.
- 3. Sistem otomasi berbasis *timer switch relay* serta monitoring menggunakan mikrokontroler ESP32 dan sensor DHT22 telah berfungsi dengan baik dalam mengatur suhu dan kelembapan secara otomatis sesuai waktu yang ditentukan.
- 4. PLTS mampu menyediakan energi listrik secara stabil dengan efisiensi panel yang cukup baik pada kondisi cuaca cerah maupun berawan. Baterai VRLA *deep cycle* berfungsi optimal dalam penyimpanan dan penyaluran daya.
- 5. Hasil analisis biaya menunjukkan bahwa sistem PLTS layak secara ekonomi untuk jangka panjang, karena mengalami defisit pada periode 5 tahun, namun menghasilkan surplus dan keuntungan pada periode penggunaan 10 tahun.
- 6. Tanaman pakcoy tumbuh optimal di dalam sistem *tower hydroponic*, ditandai dengan peningkatan tinggi, jumlah daun, dan ukuran daun sesuai standar panen hidroponik. Kebutuhan air meningkat seiring umur tanaman, menandakan efisiensi sistem distribusi air dan nutrisi.

5.2 Saran

Adapun saran yang dapat diberikan untuk penelitian selanjutnya maupun pengembangan sistem adalah sebagai berikut:

- 1. Penelitian lanjutan sebaiknya dilakukan dengan periode pengamatan yang lebih panjang untuk menilai ketahanan sistem PLTS dan produktivitas tanaman pada beberapa siklus tanam.
- 2. Perlu dilakukan pengembangan integrasi sistem monitoring berbasis *Internet of Things* (IoT) agar data intensitas cahaya, suhu, kelembapan, dan konsumsi energi dapat dipantau secara *real-time* dan lebih efisien, serta penambahan penggunaan *data logger* untuk meningkatkan akurasi data pada pengamatan sistem PLTS.
- 3. Pemilihan jenis baterai dengan kapasitas lebih besar atau teknologi penyimpanan energi lain dapat dipertimbangkan guna meningkatkan keandalan sistem, khususnya pada musim hujan dengan intensitas cahaya rendah.
- 4. Disarankan untuk menambahkan sistem pendingin pada panel surya guna meningkatkan efisiensi disaat cuaca dalam kondisi suhu yang tinggi.
- 5. Perlu dilakukan pemeliharaan berkala pada sistem *tower* hydroponic, terutama pada bagian sambungan pipa dan jalur distribusi air, untuk mencegah terjadinya kebocoran yang dapat mengganggu aliran nutrisi.
- 6. Kajian kelayakan ekonomi dapat diperluas dengan mempertimbangkan biaya perawatan jangka panjang serta potensi keuntungan dari penjualan hasil panen, sehingga perhitungan investasi lebih komprehensif.