BAB I. PENDAHULUAN

A. Latar Belakang

Tanaman aren (*Arenga pinnata* Merr.) adalah tanaman hasil hutan bukan kayu yang dapat dijadikan sebagai solusi dalam meningkatkan pendapatan dan kesejahteraan masyarakat (Wanderi *et al.*, 2019). Seluruh bagian tanaman dapat diolah menjadi berbagai produk sehingga aren memiliki nilai ekonomi yang tinggi, diantaranya buah aren dapat dijadikan kolang kaling, ijuknya digunakan untuk sapu atau atap bangunan, dan air nira diolah menjadi gula aren, cuka, alkohol, serta *nata de pina*, selain itu tanaman aren dapat dijadikan bahan baku etanol (Defiani *et al.*, 2020). Tanaman aren, yang tergolong dalam jenis palma, banyak ditemukan di hampir seluruh wilayah Indonesia sehingga berpotensi besar untuk dikembangkan.

Di Indonesia, luas lahan untuk budidaya tanaman aren mencapai sekitar 37.434 Ha dengan produktisi gula aren sebanyak 106.486 Ton/Ha. Penyebaran luas tanaman aren ini meliputi hampir seluruh pulau, di Indonesia yang menampilkan keragaman potensi. Berdasarkan luas lahan dan produksinya, Pulau Jawa menempati urutan teratas yakni seluas 13.020 Ha dengan produksi gula aren sebesar 76.033 Ton per tahun, kemudian menyusul Pulau Sumatera dengan luas 10.690 Ha dan produksi sebesar 16.837 Ton per tahun, selanjutnya Pulau Sulawesi dengan 2.774 Ha dan produksi sebanyak 9.337 Ton per tahun (Ditjenbun, 2023). Meskipun potensinya besar, keberhasilan budidaya aren masih menghadapi kendala yang perlu ditanggulangi.

Dalam upaya meningkatkan produktivitas dan mutu hasil tanaman aren, saat ini telah dikembangkan beberapa varietas yang memiliki karakteristik berbeda, baik dari segi pertumbuhan, produksi nira, maupun adaptasi terhadap lingkungan tumbuh. Salah satu varietas unggul aren adalah Smulen ST1 asal Bengkulu, yang diklasifikasikan sebagai tipe semi genjah. Varietas ini memiliki keunggulan tahan hama, adaptasi yang baik dan umur produksi yang lebih cepat dibandingkan varietas dalam (Wijaya, 2024).

Budidaya aren di Indonesia memiliki potensi agribisnis yang besar, namun perkembangannya terbatas karena ketergantungan pada tanaman yang tumbuh alami. Tanaman aren dipanen secara terus-menerus tetapi masih mengandalkan

tanaman aren yang tumbuh liar, kondisi ini mengakibatkan terbatasnya potensi aren sebagai komoditas dengan prospek yang cukup besar dan berkelanjutan sehingga mendesak untuk mengembangkan budidaya tanaman aren lebih sistematis dengan fokus pada peningkatan kualitas pertumbuhan sejak fase perkecambahan hingga fase pembibitan awal (*pre-nursery*).

Keberlanjutan budidaya tanaman aren sangat bergantung pada pemahaman terhadap faktor-faktor yang mempengaruhi pertumbuhan awal tanaman aren (*prenursery*). Saat benih aren mulai berkecambah, jaringan yang pertama kali muncul pada titik operkulum akan muncul jaringan berwarna putih yang berbentuk seperti cincin dan terus tumbuh membentuk tabung memanjang yang disebut apokol, yang berfungsi sebagai jalur pergerakan embrio dalam benih (Furqoni, 2014). Hasil penelitian Prawinata (2024) mengenai perubahan morfologi dan anatomi dalam proses perkecambahan benih aren menunjukkan bahwa dari hari pertama berkecambah hingga 47 hari setelah berkecambah menghasilkan panjang apokol yang berbeda pada setiap umur kecambah. Hubungan ini bersifat linear, di mana pertambahan umur kecambah sejalan dengan pertambahan panjang apokol. Penentuan kriteria panjang apokol yang ideal diperlukan sebagai dasar dalam teknik penanaman yang sesuai untuk memaksimalkan pertumbuhan kecambah aren hingga plumula menembus permukaan tanah.

Berdasarkan hasil penelitian mengenai hubungan posisi apokol dalam perkecambahan aren (Anwar et al., 2024), memperoleh posisi apokol tidak berpengaruh terhadap pertumbuhan kecambah aren, namun posisi apokol yang berbeda pada benih aren menunjukkan genetik yang berbeda sehingga memungkinkan untuk dijadikan penanda untuk varietas unggul aren kedepannya. Penelitian lebih lanjut oleh Rahman (2025) mengenai pengaruh letak apokol dan pemberian KNO3 terhadap karakter fisiologis, viabilitas dan pertumbuhan bibit aren, memperoleh kuadran iv merupakan letak posisi apokol terbaik terhadap karakter fisiologis, viabilitas dan pertumbuhan bibit aren dengan waktu muncul koleoptil tercepat (21 HST) dan daya berkecambah yang tertinggi (75%). Selain posisi apokol, perbedaan panjang apokol juga berimplikasi terhadap keberhasilan perkecambahan. Apokol yang pendek berada pada tahap awal perkembangan dan memerlukan energi lebih banyak bagi koleoptil menembus permukaan tanah,

sebaliknya apokol yang lebih panjang mencerminkan pertumbuhan kecambah yang optimal dalam mendorong koleoptil menembus permukaan tanah.

Panjang apokol menjadi penentu utama kedalaman tanam yang optimal. Kedalaman tanam juga memainkan peran krusial dalam pertumbuhan tanaman. Kedalaman tanam dapat mempengaruhi ketersediaan air dan nutrisi yang dibutuhkan selama fase awal pertumbuhan aren. Kedalaman tanam yang tidak tepat dapat mempengaruhi ketersediaan air dan nutrisi yang dibutuhkan selama fase awal pertumbuhan. Jika benih ditanam terlalu dalam, memungkinkan koleoptil kesulitan mencapai permukaan tanah, sedangkan jika ditanam terlalu dangkal, dapat terpapar pada kondisi lingkungan yang tidak menguntungkan (Sari, 2011). Memperhatikan kedua faktor tersebut tidak hanya mendukung pertumbuhan dan perkembangan awal bibit, melainkan juga akan menentukan kualitas sistem perakaran tanaman aren.

Tanaman aren termasuk dalam keluarga palma sama seperti kelapa sawit. Pada biji kelapa sawit, terdapat suatu sumbat kecil yang disebut operkulum, kemudian tumbuh menjadi kecambah dengan adanya perbedaan yang jelas antara radikula dan plumula. Terdapat struktur serupa sumbat yang sewaktu perkecambahan akan lepas dengan batas pelepasan yang bundar disebut operkulum dan juga ditemukan pada benih aren (Widyawati *et al.*, 2008). Penanaman kecambah kelapa sawit menurut standar kecambah normal menurut PPKS, dilakukan pada kedalaman 2 cm hingga 5 cm dari permukaan tanah (Hadi *et al.*, 2017). Pengaturan kedalaman tanam sangat mempengaruhi pertumbuhan dan perkembangan awal bibit dan menentukan kualitas sistim perakaran. Penelitian oleh Yudohartono (2018) mengenai pengaruh skarifikasi dan kedalaman tanam biji terhadap perkecambahan dan pertumbuhan bibit aren, menunjukkan bahwa kedalaman yang optimal yaitu 3 cm, dapat meningkatkan persentase kecambah hingga 48,09%, dibandingkan dengan kedalaman tanam 1 cm yang hanya mencapai 37,24 %.

Kedalaman tanam kecambah aren dan panjang apokol merupakan salah satu faktor yang berpengaruh terhadap ketersediaan sumber energi selama proses pertumbuhan, namun sampai saat ini masih belum cukup jelas bagaimana kedua faktor ini saling berinteraksi dan berdampak pada proses perkecambahan aren.

Berdasarkan pemaparan permasalahan tersebut, penulis telah melaksanakan penelitian yang berjudul "Pengaruh Panjang Apokol dan Kedalaman Tanam Terhadap Pertumbuhan Kecambah Aren (*Arenga pinnata* Merr.) di *Pre-Nursery*."

B. Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan maka rumusan masalah dari penelitian ini adalah:

- 1. Bagaimana interaksi antara panjang apokol dan kedalaman tanam mempengaruhi pertumbuhan kecambah aren di *pre- nursery*?
- 2. Berapakah panjang apokol terbaik terhadap pertumbuhan kecambah aren di *pre-nursery*?
- 3. Berapakah kedalaman tanam terbaik terhadap pertumbuhan kecambah aren di *pre-nursery*?

C. Tujuan Penelitian

Berdasarkan perumusan masalah yang telah disampaikan, tujuan dari penelitian ini adalah:

- 1. Mengetahui interaksi antara panjang apokol dan kedalaman tanam terhadap pertumbuhan kecambah aren.
- 2. Mendapatkan panjang apokol terbaik untuk pertumbuhan kecambah aren.
- 3. Mendapatkan kedalaman tanam terbaik pada panjang apokol tertentu untuk pertumbuhan kecambah aren.

KEDJAJAAN

D. Manfaat Penelitian

Penelitian mengenai topik ini diharapkan dapat memberikan wawasan baru yang akan membantu meningkatkan efisiensi dan efektivitas dalam produksi bibit aren. Hal ini pada gilirannya akan mendukung upaya pelestarian dan pengembangan tanaman aren di Indonesia, baik untuk tujuan ekonomi maupun konservasi lingkungan.