
SINTESIS DAN KARAKTERISASI SENYAWA AURIVILIUS LAPIS DUA Ca_{1-x}Sn_xBi₂Nb₂O₉ MENGGUNAKAN METODE LELEHAN GARAM SEBAGAI MATERIAL FEROELEKTRIK

SKRIPSI SARJANA KIMIA

PROGRAM SARJANA
DEPARTEMEN KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS ANDALAS
PADANG

2025

ABSTRACT

Synthesis and Characterization of Double Layer Aurivilius Compound Ca_{1-x}Sn_xBi₂Nb₂O₉ Using Molten Salt Method as Ferroelectric Material

by:

Ahmad Zaki Habibullah (NIM:2110411020) Prof. Dr. Zulhadjri, M.Eng*, Dr. Syukri*

*Supervisors

Continuous innovation in modern technology demands the development of dielectric capacitor materials that have high efficiency and thermal stability. One such candidate material is the Aurivillius compound CaBi₂Nb₂O₉ (CBN), which has stable ferroelectric properties at high temperatures, but still has weaknesse<mark>s in its electrical pr</mark>operties, including a relatively low dielec<mark>tric con</mark>stant, suboptimal spontaneous polarization, and limited energy storage efficiency. In this study, CBN was modified by substituting $\frac{\text{Ca}^2}{\text{Cations}}$ with Sn^2 in the compound $\text{Ca}_{1-x}\text{Sn}_x\text{Bi}_2\text{Nb}_2\text{O}_9$ (x = 0,025; 0,05; 0,075; 0,1; 0,15)to improve i<mark>ts e<mark>lectrical pro</mark>perties and s<mark>tor</mark>age efficiency. Synthesis was carried o<mark>ut using t</mark>he salt melt</mark> method with a mixture of NaCl/KCl in a molar ratio of 7:1 to the precursor. Characterization using XRD showed that all samples had a single phase while the diffraction pattern shifted towards a smaller diffraction a<mark>ngle. Le Bail r</mark>efinement analysis confirmed that the crystal structure <mark>was</mark> orthorhombic (A2₁am), and the lattice parameter values showed that the structural distortion due to doping did not cause signif<mark>ic</mark>ant structural changes. FTIR analysis confirmed that Sn²⁺ ions were doped at site A. To further study the bond structure at site A, Raman spectroscopy analysis was carried out and it was found that the effect of Sn²⁺ doping causes vibration weakening in the perovskite layer and some of the Sn²⁺ appears to enter the bismute layer. The band gap energy value obtained from UV-Vis DRS decreased from 3,19 eV to 3,15 eV with increasing Sn²⁺, indicating modification of the electronic band due to the role of Sn²⁺ valence electron orbitals. SEM morphology shows a layered plate-like structure and smaller grain size in line with the increasing sample density. The dielectric property analysis results show an increase in the dielectric constant and a decrease in the Curie temperature (T_c), with the emergence of relaxor properties at $x \ge 0,1$. Ferroelectric analysis results show a slimmer P-E curve and an increase in energy storage efficiency (η) due to the increase in Sn²⁺ doping composition, with the highest value of 80,94% at x = 0,15. These results indicate that the Aurivillius compound $Ca_{1-x}Sn_xBi_2Nb_2O_9$ has potential for application in environmentally friendly dielectric capacitor materials, with good thermal stability under extreme conditions.

Keywords: Aurivilius, ferroelectric, energy storage, molten-salt method, Le Bail Refinement.