BAB I. PENDAHULUAN

A. Latar Belakang

Asparaginase merupakan enzim yang mengkatalisis hidrolisis asparagin menjadi asam aspartat dan amonia. Enzim ini telah menarik perhatian yang signifikan dalam bidang biomedis dan industri pangan karena potensi aplikasinya yang luas. Asparaginase dalam bidang terapi kanker digunakan sebagai agen kemoterapi untuk pengobatan leukemia limfoblastik akut (ALL) dan beberapa jenis kanker lainnya. Penggunaan enzim ini dalam industri makanan berperan penting dalam mengurangi kadar akrilamida pada produk pangan yang diproses pada suhu tinggi.

Leukemia limfoblastik akut merupakan salah satu jenis kanker darah yang paling umum ditemukan pada anak-anak dan remaja dengan tingkat insidensi 1-4,75 kasus per 100.000 anak di seluruh dunia (Demidowicz *et al.*, 2019). Sel-sel kanker ALL, tidak seperti sel normal, sangat bergantung pada pasokan asparagin eksogen karena memiliki kemampuan yang terbatas atau bahkan tidak mampu mensintesis asparagin sendiri akibat rendahnya ekspresi enzim asparagin sintetase (Narta *et al.*, 2007). Ketergantungan sel kanker pada asparagin eksogen inilah yang menjadikan asparaginase sebagai pilihan terapi yang efektif untuk ALL.

Asparaginase bekerja dengan cara mendeplesi asparagin dalam plasma darah, yang mengakibatkan sel-sel leukemia kekurangan nutrisi esensial ini, sehingga menghambat sintesis protein dan akhirnya menyebabkan apoptosis (Batool *et al.*, 2016). Terapi asparaginase telah terbukti meningkatkan tingkat remisi komplet hingga 90% pada pasien anak-anak dan 70% pada pasien dewasa dengan ALL (El Naggar *et al.*, 2018). Meskipun menunjukkan efektivitas yang tinggi, penggunaan asparaginase dalam terapi kanker masih menghadapi beberapa tantangan, seperti reaksi hipersensitivitas, resistensi sel kanker, aktivitas glutaminase yang tidak diinginkan, serta waktu paruh yang relatif singkat dalam sirkulasi (Kumar *et al.*, 2017). Oleh karena itu, upaya rekayasa enzim asparaginase dengan karakteristik yang lebih baik menjadi sangat penting untuk meningkatkan efektivitas terapeutik dan mengurangi efek samping terapi.

Asparaginase juga banyak digunakan untuk menurunkan kadar akrilamida dalam makanan yang diproses pada suhu tinggi, seperti keripik kentang, roti, dan produk *bakery* lainnya. Akrilamida terbentuk melalui reaksi *Maillard* antara asparagin dan gula pereduksi pada suhu di atas 120°C (Tareke *et al.*, 2002). Senyawa ini diklasifikasikan sebagai "*probable human carcinogen*" oleh *International Agency for Research on Cancer* (IARC) dan konsumsi jangka panjang dapat meningkatkan risiko kanker pada manusia (Lyon, 2014).

Penggunaan asparaginase dalam proses produksi makanan dapat menghidrolisis asparagin menjadi asam aspartat sebelum proses pemanasan, sehingga mengurangi prekursor utama pembentukan akrilamida (Pedreschi *et al.*, 2011). Beberapa studi menunjukkan bahwa penggunaan asparaginase dapat mengurangi kadar akrilamida hingga 90% pada berbagai produk pangan tanpa mempengaruhi karakteristik sensorik produk (Xu *et al.*, 2016). Namun, aplikasi asparaginase dalam industri pangan juga menghadapi tantangan, seperti stabilitas enzim yang rendah pada suhu dan pH ekstrem, serta biaya produksinya yang masih tinggi (Zuo *et al.*, 2015). Rekayasa protein untuk menghasilkan asparaginase dengan nilai ekonomis, stabilitas dan aktivitas yang lebih baik pada proses pengolahan pangan menjadi fokus penelitian yang penting.

Sumber asparaginase yang paling umum digunakan dalam aplikasi klinis adalah *Escherichia coli* dan *Dickeya chrysanthemi*. Namun, kedua sumber ini memiliki keterbatasan, seperti waktu paruh yang singkat, reaksi imunogenik, dan aktivitas glutaminase yang tinggi, yang dapat menyebabkan efek samping seperti pankreatitis, gangguan koagulasi, dan neurotoksisitas (Egler *et al.*, 2016). Oleh karena itu, pencarian sumber asparaginase baru dengan karakteristik yang lebih baik terus dilakukan.

Isolat bakteri *Serratia plymuthica* UBCF_13 telah ditemukan dari tanaman sawi (*Brassica juncea* L.) di Kabupaten Solok, Sumatera Barat, Indonesia pada tahun 2012 melalui penelitian yang dilaksanakan oleh Aisyah *et al* (2017). Fatiah *et al*. (2021) selanjutnya melakukan *whole genome sequencing* terhadap isolat tersebut dan mendokumentasikan anotasi sekuens genom lengkap *S. plymuthica* UBCF_13 dalam *database National Center for Biotechnology Information* (NCBI) dengan nomor aksesi CP068771. Ketika dilakukan eksplorasi potensi bakteri ini

menggunakan pendekatan *genome mining*, ditemukan bahwa *S. plymuthica* UBCF_13 memiliki kemampuan untuk memproduksi asparaginase II, yang diindikasikan oleh keberadaan gen *AnsB* yang mengkode enzim asparaginase II. Temuan ini membuka peluang untuk memanfaatkan *S. plymuthica* UBCF_13 sebagai sumber alternatif dalam produksi asparaginase II rekombinan.

Asparaginase dibagi menjadi subtipe I dan II berdasarkan perbedaan struktur serta lokasi intraseluler dan ekstraselulernya (Michalska dan Jaskolski, 2006). Asparaginase II telah mendapatkan perhatian sebagai agen antikanker untuk pengobatan leukemia limfoblastik akut (ALL) dan limfosarkoma, terutama karena afinitas substratnya yang superior (Chand *et al.*, 2020). Asparaginase II juga terbukti mampu menurunkan kadar akrilamida yang berpotensi karsinogenik pada produk makanan yang diproses dengan suhu tinggi tanpa mengubah penampilan, kualitas, maupun cita rasanya (Jiao *et al.*, 2020; Xu *et al.*, 2016).

Pendekatan rekayasa protein secara tradisional berbasis eksperimen membutuhkan waktu yang lama, biaya yang tinggi, dan seringkali *trial-and-error*. Seiring dengan perkembangan teknologi komputasi dan bioinformatika, pendekatan *in-silico* untuk rekayasa protein menjadi alternatif yang efisien dan efektif dari segi waktu dan biaya. Studi *in-silico* adalah metode penelitian yang menggunakan simulasi komputer untuk memahami dan menganalisis fenomena biologis atau kimiawi. Metode *in-silico* memungkinkan prediksi struktur protein, identifikasi sisi aktif, analisis interaksi protein-substrat, dan simulasi efek mutasi pada stabilitas dan aktivitas enzim sebelum dilakukan validasi eksperimental (Danishuddin dan Khan, 2015).

Pendekatan *in-silico* dalam rekayasa asparaginase dapat membantu dalam identifikasi sisi-sisi potensial untuk mutasi yang dapat meningkatkan karakteristik enzim sesuai dengan aplikasi yang diinginkan, baik untuk terapi kanker maupun industri pangan. Misalnya, untuk aplikasi terapeutik, fokus rekayasa dapat diarahkan pada peningkatan stabilitas *in vivo*, penurunan imunogenisitas, dan minimalisasi aktivitas glutaminase. Sementara untuk aplikasi industri pangan, fokus dapat diberikan pada peningkatan stabilitas termal dan pH, serta optimasi aktivitas pada kondisi proses makanan (Offman *et al.*, 2011).

Beberapa penelitian yang menggunakan pendekatan *in-silico* dalam melakukan rekayasa enzim asparaginase seperti, penelitian Ardalan *et al.* (2021) berhasil merancang mutan enzim asparaginase II dari *E. coli* untuk mengurangi aktivitas glutaminase dari enzim tersebut. Zhou *et al.* (2022) dalam penelitiannya menggunakan metode *in-silico* dalam merancang mutasi enzim asparaginase II dari *Bacillus licheniformis* untuk meningkatkan aktivitas katalitik enzim tersebut. Sementara itu, masih belum ada penelitian sejenis yang dilakukan pada *S. plymuthica* terutama untuk *S. plymuthica* UBCF 13.

Penelitian ini bertujuan untuk melakukan studi *in-silico* rekayasa gen Asparaginase II dari *S. plymuthica* UBCF_13 untuk mengidentifikasi sisi-sisi potensial yang dapat dimutasi untuk menghasilkan enzim rekombinan dengan kinerja yang lebih tinggi. Hasil penelitian ini diharapkan dapat memberikan landasan teoritis untuk pengembangan asparaginase rekombinan yang berasal dari *S. plymuthica* UBCF_13 dengan karakteristik yang sesuai untuk aplikasi terapi kanker dan industri pangan.

B. Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, rumusan masalah dalam penelitian ini adalah sebagai berikut:

- 1. Bagaimana struktur tiga dimensi (3D) serta karakteristik molekuler dari asparaginase II yang berasal dari *S. plymuthica* UBCF_13?
- 2. Domain mana pada struktur protein asparaginase II dari *S. plymuthica* UBCF_13 yang potensial untuk direkayasa melalui mutasi terarah untuk meningkatkan kinerjanya?
- 3. Bagaimana pengaruh mutasi yang dirancang terhadap struktur, stabilitas, dan aktivitas katalitik asparaginase II dari *S. plymuthica* UBCF_13 berdasarkan simulasi *in-silico*?

C. Tujuan Penelitian

Penelitian ini memiliki tujuan sebagai berikut:

- Mengidentifikasi dan menganalisis struktur protein, serta membangun dan memvalidasi model tiga dimensi (3D) dari asparaginase II yang berasal dari S. plymuthica UBCF_13.
- 2. Mengidentifikasi sisi-sisi domain potensial pada struktur protein asparaginase II dari *S. plymuthica* UBCF_13, lalu merancang mutasi *insilico* pada domain tersebut.
- 3. Menganalisis dampak mutasi terhadap stabilitas dan fungsi protein, serta melakukan simulasi interaksi antara enzim dan substrat pada asparaginase II yang berasal dari *S. plymuthica* UBCF 13.

D. Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:

- 1. Menyediakan informasi mengenai struktur dan karakteristik molekuler asparaginase II dari *S. plymuthica* UBCF_13 yang dapat menjadi dasar pengetahuan untuk penelitian lebih lanjut.
- Mengembangkan pemahaman tentang hubungan struktur-fungsi pada enzim asparaginase dan bagaimana modifikasi tertentu dapat mempengaruhi kinerja enzim.

