
PENGARUH DOSIS PUPUK ORGANIK LIMBAH KELAPA SAWIT (LKS) YANG DIPERKAYA DENGAN PUPUK KANDANG SAPI DAN DOLOMIT BERDASARKAN LAMA INKUBASI TERHADAP CIRI KIMIA ULTISOL

SKRIPSI

FAKULTAS PERTANIAN UNIVERSITAS ANDALAS PADANG 2025

BAB I. PENDAHULUAN

A. Latar Belakang

Ultisol merupakan salah satu jenis tanah di Indonesia yang tersebar di beberapa pulau besar yang mencapai wilayah sekitar 45.794.000 ha 25% dari total luas daratan Indonesia. Lahan ini berkembang pada berbagai topografi, dari bergelombang hingga bergunung-gunung dengan curah hujan yang tinggi (Alibasyah, 2016). Di Sumatera Barat, Ultisol tersebar luas di berbagai daerah, salah satunya di Kota Padang, seperti tanah di Kebun Percobaan Fakultas Pertanian, Limau Manis Padang. Menurut penelitian Safitri (2016), Ultisol di kebun percobaan Limau Manis Padang memiliki nilai pH H₂O sebesar 5,17 dengan kriteria masam. Kandungan C-organik rendah (1,68 %), N-total rendah (0,18 %), Kapasitas Tukar Kation (KTK) rendah (14,93 me/100g) dan P-tersedia sangat rendah (1,24 %). Kadar Al-dd pada Ultisol berkisar 1-8 me/100g tanah. Kadar fosfor (P) berkisar 0,0005 %. Kadar hara lainnya yaitu kalsium (Ca) rendah, (2 me/100g), Magnesium (Mg) rendah, (0,2-0,5 me/100g), Kalium (K) rendah, (0,2 me/100g).

Ultisol, selain kesuburan yang rendah juga mempunyai horizon penciri yaitu horizon Argilik. Lapisan ini merupakan lapisan liat yang mengalami penumpukan di horizon B sebesar 1,2 kali lebih tinggi dibandingkan horizon diatasnya. Akibatnya, Ultisol memiliki kapasitas menahan air yang rendah dan mudah terkikis jika tidak dikelola dengan baik. Penggunaan Pupuk Organik (PO) dan anorganik, dan juga penambahan kapur untuk mengurangi tingkat kemasaman tanah sangat diperlukan. Salah satu sumber bahan PO dapat diperoleh dari limbah kelapa sawit padat.

Limbah Kelapa Sawit (LKS) padat berasal dari proses pemurnian minyak (menggunakan alat *Decanter*). Yuniza (2015) menyatakan bahwa di dalam *Decanter Solid* kering terdapat unsur hara utama antara lain Nitrogen (N) 1,47%; Fosfor (P) 0,17%; Kalium (K) 0,99%; Kalsium (Ca) 1,19%; Magnesium (Mg) 0,24% dan C-Organik 1,14%. *Decanter* digunakan untuk memisahkan fase cair (minyak dan air) dari fase padat sampai menjadi partikel-partikel terakhir.

Bahan LKS padat memiliki ciri yang lunak dengan struktur yang halus

seperti tepung. Bahan LKS mentah memiliki bentuk dan konsistensi seperti ampas tahu, berwarna kecoklatan, berbau asam, dan masih mengandung minyak CPO sekitar 1,5% (Imran et al., 2020). Bahan LKS padat dari PKS memiliki potensi yang cukup besar untuk dimanfaatkan, salah satunya untuk meningkatkan pertumbuhan tanaman, Selain itu limbah padat yang telah menjadi kompos dapat dibuat sebagai bahan campuran dalam media tanam. Bahan LKS padat juga dapat menjadi pembenah tanah, dan diharapkan dapat meningkatkan daya dukung tanah dan ketersediaan bahan organik serta unsur hara terhadap pertumbuhan tanaman. Bahan LKS padat berfungsi menambah hara ke dalam tanah dan juga sangat diperlukan untuk perbaikan ciri fisik, kimia, biologi tanah. Jumlah limbah padat dipengaruhi oleh faktor-faktor seperti varietas kelapa sawit, tingkat kematangan buah, dan efisiensi proses ekstraksi minyak. Secara umum, persentase limbah padat berkisar antara 20-30% dari berat awal Tandan Buah Sawit (TBS). Dari 1 ton TBS yang diolah, sekitar 200 hingga 300 kilogram menjadi limbah padat (Nasrin et.al., 2004).

Jumlah yang cukup besar ini menunjukkan pentingnya pengelolaan limbah padat kelapa sawit yang efektif dan efisien. Melimpahnya limbah padat dari industri kelapa sawit menjadi tantangan sekaligus peluang, salah satu cara untuk mengolah limbah tersebut menjadi bahan baku pembuatan pupuk organik. Limbah padat kelapa sawit juga dapat digunakan untuk memperbaiki kualitas tanah melalui pembuatan kompos. Pemanfaatan limbah secara optimal tidak hanya mengurangi dampak negatif terhadap lingkungan, tetapi juga memberikan nilai tambah bagi industri kelapa sawit.

Secara umum, penentuan dosis pupuk organik yang tepat harus disesuaikan dengan kebutuhan hara tanaman, kandungan hara yang dimiliki pupuk, serta karakteristik tanah yang akan diperbaiki. Berbagai penelitian menunjukkan bahwa peningkatan dosis pupuk organik mampu memberikan pengaruh signifikan terhadap peningkatan kadar unsur hara makro dan mikro, sekaligus menurunkan tingkat kemasaman tanah. Hal ini terjadi melalui proses dekomposisi bahan organik yang menghasilkan senyawa humat dan asam-asam organik yang bermanfaat bagi perbaikan ciri kimia tanah (Rosmarkam *et.,al* 2002). Meski demikian, hubungan antara dosis pupuk organik dan perbaikan ciri tanah berciri

proporsional hanya hingga titik tertentu. Setelah melewati dosis optimum, penambahan pupuk organik tidak lagi memberikan peningkatan yang berarti, bahkan berpotensi menimbulkan dampak negatif terhadap tanah maupun tanaman.

Penentuan dosis ideal perlu mempertimbangkan kandungan hara yang terdapat dalam LKS padat, kecepatan proses dekomposisinya, serta lama inkubasi yang diterapkan. Dengan demikian, pupuk organik dapat terurai secara optimal dan menyediakan unsur hara dalam jumlah yang memadai, sehingga mampu mendukung pertumbuhan tanaman secara berkelanjutan. Untuk memanfaatkan kadar hara yang tersedia dalam LKS padat dan diberikan pada tanah, salah satu cara yang dapat dilakukan yaitu dengan mencampurkan bahan LKS padat murni dengan bahan organik lain seperti pupuk kandang sapi dan di inkubasi selama beberapa minggu.

Inkubasi tanah merupakan proses fermentasi bahan yang dibusukkan dalam kondisi lembab untuk periode waktu tertentu. Tujuannya untuk mempelajari berbagai aspek biologi, kimia, dan fisika tanah. Proses ini sering digunakan dalam penelitian pertanian dan lingkungan untuk mengevaluasi perubahan yang terjadi dalam tanah, seperti pelapukan bahan organik, pelepasan nutrisi, atau aktivitas mikroba. Inkubasi dilakukan dalam kondisi terkendali di laboratorium, yang memungkinkan para peneliti untuk mengisolasi dan mengamati efek dari berbagai perlakuan atau kondisi lingkungan terhadap tanah. Selama inkubasi, tanah ditempatkan dalam wadah tertutup atau terbuka dan dapat disimpan pada suhu, kelembaban, dan aerasi tertentu yang ditentukan oleh tujuan penelitian. Misalnya, suhu yang lebih tinggi dapat mempercepat dekomposisi bahan organik oleh mikroorganisme tanah, sementara kelembaban yang optimal dapat mendukung aktivitas mikroba yang maksimal. Kondisi-kondisi ini dimonitor dan disesuaikan secara teratur untuk memastikan bahwa tanah berada dalam keadaan yang ideal untuk mengamati perubahan yang diinginkan. Waktu inkubasi dapat bervariasi dari beberapa minggu hingga beberapa bulan, tergantung pada tujuan penelitian dan karakteristik tanah yang dipelajari.

Berdasarkan uraian diatas yang telah dipaparkan maka penulis telah melakukan penelitian yang berjudul "Pengaruh Dosis Pupuk Organik Limbah Kelapa Sawit (LKS) yang Diperkaya dengan Pupuk Kandang Sapi dan

Dolomit pada Beberapa Lama Inkubasi Terhadap Ciri Kimia Ultisol".

B. Tujuan Penelitian

Tujuan dari penelitian ini adalah Untuk mempelajari pengaruh dosis Limbah Kelapa Sawit (LKS) padat dari beberapa lama waktu inkubasi terhadap perbaikan ciri kimia Ultisol.

