BABV

PENUTUP

5.1 Kesimpulan

Dari hasil penelitian yang telah dilakukan, dapat disimpulkan sebagai berikut.

- 1. Dari pengujian tarik pada **Tabel 4.1**, hasil penelitian menunjukkan adanya hasil yang menarik terkait kekuatan, elongasi, dan modulus elastisitas komposit. Secara keseluruhan, penambahan MMA dan arang cenderung meningkatkan kekuatan tarik komposit, dengan nilai rata-rata tertinggi sebesar 30.57 MPa tercatat pada variasi Polyester 60%, MMA 10%, dan Arang 30%, mengindikasikan bahwa komposisi tertentu dari filler dapat mengoptimalkan kemampuan material menahan beban tarik. Meskipun demikian, elongasi komposit bervariasi; nilai rata-rata elongasi tertinggi adalah 12,91% pada komposit Polyester 90% dan MMA 10%, namun elongasi cenderung menurun pada konsentrasi arang yang lebih tinggi, menandakan peningkatan kekakuan material. Sementara itu, modulus elastisitas menunjukkan peningkatan signifikan dengan penambahan arang, mencapai nilai rata-rata tertinggi 880.77 MPa pada variasi Polyester 70%, MMA 10%, dan Arang 20%, yang menegaskan kontribusi arang dalam meningkatkan kekakuan komposit.
- 2. Dari pengujian bending pada **Tabel 5.1**, sifat mekanik komposit juga menunjukkan peningkatan kekuatan yang jelas seiring dengan penambahan arang. Kekuatan bending tertinggi mencapai 61,06 N/mm, yang diperoleh dari komposit dengan komposisi Polyester 70%, MMA10% 20%, dan Arang 30%. Hasil ini semakin memperkuat temuan bahwa arang berperan penting dalam meningkatkan ketahanan komposit terhadap beban bending, menjadikannya lebih kuat dan kaku saat ditekuk.

5.2 Saran

Penelitian ini memberikan dasar yang baik, namun kami menyadari adanya ruang untuk perbaikan. Oleh karena itu, kami sangat menghargai masukan konstruktif dari pembaca. Untuk penelitian selanjutnya, kami merekomendasikan hal-hal berikut:

- 1. Penyusunan Serbuk: Pastikan distribusi serbuk merata untuk menghasilkan material komposit dengan kualitas yang optimal.
- 2. Reduksi Rongga Udara (Void): Berupaya untuk meminimalkan keberadaan rongga udara (void) dalam komposit yang dihasilkan agar kekuatan material dapat dicapai secara maksimal.

