BAB I. PENDAHULUAN

1.1 Latar Belakang

Pesatnya pertumbuhan penduduk dan perkembangan industri telah mendorong peningkatan kebutuhan energi secara global. Namun, disisi lain ketersediaan bahan bakar fosil semakin berkurang dan penggunaannya yang berlebihan akan memicu permasalahan lingkungan¹. Selama beberapa tahun terakhir, energi terbarukan semakin memainkan peran penting dalam sektor energi akibat berbagai tantangan global. Untuk mengatasi tantangan ini, diperlukan transisi menuju energi alternatif dan berkelanjutan, salah satunya adalah hidrogen². Hidrogen memiliki karakteristik sebagai sumber energi berkualitas tinggi, efisien, berjejak karbon rendah, dan dapat disimpan dalam jangka waktu lama yang kemudian dapat digunakan sesuai permintaan³. Penggunaan hidrogen secara luas dapat memenuhi kebutuhan energi global, memperkuat keamanan energi, serta memberikan dampak positif bagi lingkungan dan ekonomi⁴.

Gas Hidrogen dapat diperoleh melalui beberapa metode seperti metode termokimia, fotobiologis, fotoelektrokimia, elektrokimia, dan fotokatalisis. Diantara beberapa metode tersebut, produksi hidrogen (H₂) secara fotokatalisis melalui pemisahan molekul air dibawah sinar matahari menjadi alternatif ideal yang ramah lingkungan untuk memenuhi kebutuhan energi dunia⁵. Banyak penelitian difokuskan pada produksi hidrogen fotokatalitik oleh logam semikonduktor seperti TiO₂, CdS, ZnS, WO₃, ZnO, and Co₃O₄⁶. Fujishima dan Honda pada tahun 1972 pertama kali mengaplikasikan fotokatalisis TiO₂ dalam pemisahan molekul air menjadi gas hidrogen. Material TiO₂ dianggap sebagai kandidat yang menjanjikan untuk mendukung hidrogen masa depan karena memiliki karakteristik unik seperti stabilitas kimia tinggi, tidak beracun, tahan terhadap erosi, mudah disintesis, dan aktivitas fotokatalitiknya tinggi⁷.

Kinerja fotokatalis TiO₂ dapat dimaksimalkan dengan optimalisasi ukuran partikel TiO₂ seperti menggunakan TiO₂ dalam ukuran nano. Pada dasarnya material dalam skala nano (1-100 nm) memiliki sifat-sifat yang secara signifikan meningkat dibandingkan bulk materialnya, meskipun dengan struktur kristal yang sama⁸. Namun, kelemahan nanopartikel TiO₂ yaitu hanya mampu menyerap sinar UV (5% dari spektrum sinar matahari) karena celah pitanya yang lebar. Oleh karena itu, untuk mengoptimalkan efisiensi penyerapan TiO₂ secara siginifikan dibawah cahaya tampak dapat dilakukan pendopingan pada kisi kristal TiO₂. Pendopingan dengan nitrogen (N) telah dianggap sebagai salah satu pendekatan paling efektif untuk meningkatkan aktivitas fotokatalitik TiO₂ di daerah cahaya tampak⁹. Menurut penelitian yang telah dilakukan Xiaoyou YU dan Qianrui LV (2021)¹⁰, doping TiO₂ dengan nitrogen dapat mempersempit celah pita dan memperbaiki sifat optik dari TiO₂.

Sumber nitrogen yang digunakan dalam pembuatan nanopartikel TiO_2 didoping nitrogen umumnya berasal dari bahan kimia¹¹. Wellia *et al.*, $(2023)^{12}$ melaporkan sumber nitrogen yang digunakan adalah ammonium hidroksida (NH₄OH). Selain itu, penelitian lain

juga menyebutkan penggunaan ammonium klorida, hidrazin, tiourea, dan ammonium nitrat sebagai sumber nitrogen¹³. Namun, kekurangan dalam penggunaan bahan kimia tersebut adalah toksisitas tinggi, biaya mahal, konsumsi energi tinggi, dan tidak ramah lingkungan¹⁰. Adapun alternatif lain sebagai sumber nitrogen dalam pembuatan TiO₂ didoping nitrogen yang ramah lingkungan yaitu berasal dari limbah biomassa.

Salah satu limbah biomassa yang memiliki potensi sebagai sumber nitrogen dalam sintesis TiO₂ didoping nitrogen yaitu limbah kulit udang. Limbah kulit udang merupakan kontributor signifikan terhadap pencemaran lingkungan dan menimbulkan masalah kesehatan karena meningkatnya pembuangannya ke lingkungan. Padahal, limbah kulit udang mengandung senyawa utama seperti kitin yang dapat diolah dan dimanfaatkan sebagai produk yang penting untuk berbagai aplikasi potensial. Kandungan kitin pada limbah kulit udang mencapai (15-50%) lebih tinggi dibandingkan kepiting hanya mencapai (16-30%) dan kerang (14-35%)¹⁴. Akan tetapi, kitin memiliki keterbatasan sifat fisik seperti hidrofobisitas yang tinggi, tidak larut dalam pelarut organik dan anorganik umum sehingga kitin perlu dimodifikasi menjadi kitosan melalui proses deasetilasi. Kitosan merupakan turunan kitin yang mengandung gugus fungsi polar berlimpah seperti —NH₂¹⁵. Gugus fungsi tersebut dapat berperan sebagai sumber nitrogen dalam sintesis nanopartikel TiO₂ didoping nitrogen. Kitosan telah dianggap sebagai prekursor nitrogen yang ramah lingkungan dan hemat biaya karena tidak beracun, mudah terurai secara hayati, dan memiliki biokompabilitas yang baik¹⁶.

Khan *et al.*, (2023)⁹ dalam penelitiannya menyiapkan nanopartikel N-*doped* TiO₂ dengan metode sol gel dan trietilamina sebagai sumber nitrogen menunjukkan kinerja fotokatalitik menghasilkan gas hidrogen (H₂) pada laju 386 µmol h⁻¹ g⁻¹ sedangkan TiO₂ tanpa pendopingan dengan laju 48 µmol h⁻¹g⁻¹. Berdasarkan hasil tersebut menunjukkan nanopartikel N-*doped* TiO₂ mampu meningkatkan akivitas fotokatalitik produksi hidrogen hingga 8 kali lebih banyak dibandingkan TiO₂ kontrol. Hal tersebut didukung oleh penelitian terbaru Evan (2024) berfokus pada penggunaan kitosan komersial sebagai sumber nitrogen pada N-*doped* TiO₂ *nanowires*. Hasil penelitian menunjukkan bahwa N-*doped* TiO₂ *nanowires* mampu meningkatkan aktivitas fotokatalitik untuk produksi hidrogen hingga 1,2 kali lebih tinggi dibandingkan dengan TiO₂ *nanowires*. Oleh karena itu, pada penelitian ini dilakukan sintesis nanopartikel TiO₂ didoping nitrogen dengan sumber nitrogen yang ramah lingkungan yaitu dari kitosan limbah kulit udang untuk menguji kemampuan fotokatalis tersebut dalam memproduksi qas hidrogen (H₂).

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, maka dapat dibuat rumusan masalah sebagai berikut:

1. Bagaimana karakteristik nanopartikel TiO₂ didoping nitrogen yang disintesis menggunakan variasi konsentrasi kitosan dari limbah kulit udang sebagai sumber nitrogen?

- 2. Berapa massa kitosan yang optimum dalam sintesis nanopartikel TiO₂ didoping nitrogen?
- 3. Bagaimana efektivitas kemampuan fotokatalitik TiO₂ didoping nitrogen hasil sintesis dalam memproduksi hidrogen?

1.3 Tujuan Penelitian

Tujuan penelitian ini adalah:

- 1. Mempelajari karakteristik nanopartikel TiO₂ didoping nitrogen yang disintesis menggunakan variasi konsentrasi kitosan dari limbah kulit udang sebagai sumber nitrogen.
- 2. Menentukan massa optimum kitosan untuk sintesis nanopartikel TiO₂ didoping nitrogen.
- 3. Menguji efektivitas kemampuan fotokatalitik nanopartikel TiO₂ didoping nitrogen untuk memproduksi hidrogen.

1.4 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan informasi dan pengetahuan baru bahwa bahan alam seperti limbah kulit udang dapat dimanfaatkan sebagai sumber nitrogen yang murah, aman, dan ramah lingkungan dalam sintesis nanopartikel TiO₂ didoping nitrogen, serta ikut berkontribusi dalam memproduksi hidrogen dengan efektif.

