DESIGN OF PRESTRESSED CONCRETE BRIDGE USING PCI-GIRDER BY IMPLEMENTING THE CONCEPT OF BUILDING INFORMATION MODELING (BIM)

UNDERGRADUATE THESIS

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING ANDALAS UNIVERSITY PADANG 2025 DESIGN OF PRESTRESSED CONCRETE BRIDGE USING PCI-GIRDER BY IMPLEMENTING THE CONCEPT OF BUILDING INFORMATION MODELING (BIM)

UNDERGRADUATE THESIS

Written by:

AFDHIL NIM: 2110922064

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING ANDALAS UNIVERSITY PADANG 2025

DESIGN OF PRESTRESSED CONCRETE BRIDGE USING PCI-GIRDER BY IMPLEMENTING THE CONCEPT OF BUILDING INFORMATION MODELING (BIM)

UNDERGRADUATE THESIS

Submitted as a requirement for completing the Undergraduate Program in the Department of Civil Engineering, Faculty of Engineering, Andalas University

Written by:

AFDHIL NIM: 2110922064

Supervisor: Ir. MASRILAYANTI, S.T.,M.Sc.,Ph.D

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING ANDALAS UNIVERSITY PADANG 2025

APPROVAL SHEET OF UNDERGRADUATE THESIS DEPARTMENT OF CIVIL ENGINEERING – FACULTY OF ENGINEERING UNIVERSITAS ANDALAS

DESIGN OF PRESTRESSED CONCRETE BRIDGE USING PCI-GIRDER BY IMPLEMENTING THE CONCEPT OF BUILDING INFORMATION MODELING (BIM)

Written by : Name : AFDHIL NIM : 2110922064

Supervisor:

Ir. Masrilayanti, S.T.,M.Sc.,Ph.D NIP. 197512192001122001

Knowns by, Head of Civil Engineering Department, Head of Civil Enginee

THESIS DEFENSE FORM

DEPARTMENT OF CIVIL ENGINEERING - FACULTY OF ENGINEERING

UNIVERSITAS ANDALAS

Today, Tuesday, January 21, 2025, the Thesis Defense for student has been held:

Name : AFDHIL NIM

Title

: 2110922064

: DESIGN OF PRESTRESSED CONCRETE BRIDGE USING PCI-**GIRDER BY IMPLEMENTING THE CONCEPT OF BUILDING INFORMATION MODELING (BIM)**

Examiners Team:

Head of Examiner

: Yosritzal, S.T., M.T., Ph.D.

Member of Examiner : Ir. Masrilayanti, S.T., M.Sc., Ph.D

Ir. Jati Sunaryati, S.T, M.T, Ph.D.

DECLARATION OF AUTHENTICITY

The undersigned, I:

Nama	:	Afdhil
Place, Date of Birth	:	Bengkulu, 05-09-2003
NIM	:	2110922064
Address	:	Jl. H A Rahman No.43 Betungan, Selebar,
		Bengkulu City, Bengkulu

Stating truthfully that the THESIS entitled:

Design Of Prestressed Concrete Bridge Using Pci-Girder By Implementing The Concept Of Building Information Modeling (Bim)

What I wrote was really my own work and was not plagiarism or a plagiarization of someone else's thesis.

Suppose in the future it turns out that my statement is not true, In that case, I am willing to accept the applicable academic sanctions (the revocation of the graduation title and bachelor's degree).

Thus, I make this statement in truth, to be able to be used as it should.

Padang, 23-01-2025

<u>Afdhil</u> NIM:2110922064

ABSTRACT

This research focuses on designing prestressed concrete bridges using PCI-Girder (Precast Concrete I-girder) by implementing the Building Information Modeling (BIM) concept to improve the calculation, planning, and design processes. The main purpose of this research is to develop a comprehensive design of prestressed concrete bridges that can withstand various loads, such as dead loads, live loads, and environmental factors, by using PCI girders for efficient structural performance. The study also investigates the application of BIM to aid in structural modeling, load calculation, and structural detailing, which ensures accuracy and optimizes the design process. Through the application of BIM, this research shows how integrating digital modeling and data management can streamline design workflows and improve the accuracy of structural analysis. In addition, the research evaluates the advantages and challenges associated with using BIM in the context of prestressed concrete bridge design, as well as identifies potential improvements in design accuracy, error reduction, and interdisciplinary communication. A detailed engineering design (DED) for the prestressed concrete bridge was developed, covering all the important structural elements and specifications, guided by the results of BIM-based 3D modeling. This study highlights the potential of BIM in modern infrastructure projects, especially in the design and construction of prestressed concrete bridges, and provides recommendations for its future application in similar projects. In this design process, Midas Civil 2022 and Autodesk Revit 2023 software are used to optimize the analysis as well as design and model the bridge structure. Midas Civil 2022 is a structural design and analysis software used for the calculation of bridge loads, deformations, and structural stability. This software allows for more in-depth and accurate analysis, which is crucial in the design of prestressed concrete bridges. Meanwhile, Revit is used to build 3D modeling of bridges, enabling clearer visualization and better coordination between disciplines, as well as supporting **BIM** in accelerating the planning and design process.

Keywords: Prestressed Concrete Bridge, Building Information Modeling (BIM), Structural Design, Detailed Engineering Design (DED), Midas Civil 2022, Autodesk Revit 2023.

PREFACE

All the praise and deep gratitude to our almighty, Allah SWT, for the mercy and grace given to the author that made this undergraduate thesis can be completed properly. Greetings and shalawat may always be devoted to the Prophet Muhammad SAW.

This undergraduate thesis entitled "**Design of Prestressed Concrete Bridge Using PCI-Girder by Implementing The Concept of Building Information Modeling (BIM)**" is made as a requirement for completing the Undergraduate Program (Curriculum Stratum-1) in the Department of Civil Engineering, Faculty of Engineering, Andalas University.

The writer would like to say thank you for all the help that has been given while doing this undergraduate thesis, either directly or indirectly during the preparation of this undergraduate thesis to complete. On this opportunity and occasion, the author would like to express his profound gratitude, to :

- 1. Mrs. Masrilayanti, S.T.,M.Sc.,Ph.D, The Supervisors, who have given is time, guidance, knowledge, direction, and motivation to complete this undergraduate thesis;
- 2. Mr. Ade Edwarlis and Mrs. Yuniarti, The author's parent, Always provide support and prayers to the Author;
- 3. Mrs. Monalisa Yuned, Mrs. Reski Oktaviani Yuned, Mrs. Sri Rahmiwati Yuned, and Mr. Arif Rahman, The author's brother and sister, Who has directed, helped and motivated the author;
- 4. All lecturers and academic staff within the Department of Civil Engineering who have been involved in the completion of the Undergraduate Thesis;
- 5. The writer's housemate who has given support, motivation, and attention to the writer;
- 6. The big family of Survey and Mapping Laboratory, which always gives enthusiasm and motivation to the author;
- 7. All friends of Civil Engineering Class 21 who always give encouragement, support, and attention to the author;
- 8. All people who have helped in completing this undergraduate thesis that cannot be mentioned one by one by the author

The author realizes that writing this undergraduate thesis is still far from perfect. Therefore, the author expects constructive criticism and suggestions from all parties as input for the author in the future. Hopefully, this final project will be useful and provide readers with insight, especially for the author as well.

Padang, January 2025

Afdhil

TABLE OF CONTENT

ABSTRACT	i
PREFACE	ii
TABLE OF CONTENT	iv
LIST OF FIGURES	vii
LIST OF TABLES	xi
LIST OF ATTACHMENT	xii
CHAPTER I INTRODUCTION	1
1.1. BACKGROUND OF THE RESEARCH	1
1.2. OBJECTIVE AND BENEFITS OF THE RESEARCH	2
1.3. SCOPE AND LIMITATION	3
CHAPTER II REVIEW OF LITERATURE	4
2.1. PRESTRESSED CONCRETE	4
2.1.1. Definition of Prestressed Concrete	4
2.1.2. General Principles of Prestressed Concrete	4
2.1.3. Types of Prestressed Concrete	8
2.1.4. Advantages and Disadvantages of Prestressed Concrete	10
2.2. CONSTRUCTION OF CONCRETE BRIDGE	
2.2.1 Definition and History of Concrete Bridge	11
2.2.1. Definition and Function of Bridge Component	11
2.2.2. Characteristics and Function of Druge Component	11
2.2.3. Classification of Concrete Bridge According to Superstructure Type	13
2.2.4. Structure of Concrete Bridge	14
2.3. BUILDING INFORMATION MODELING (BIM)	16
2.3.1. Definition Building Information Modeling (BIM)	16
2.3.2. History and Development of Building Information Modeling (BIM)	16
2.3.3. Building Information Modeling (BIM) Dimension	17

2.3.4.	Benefit of Building Information Modeling (BIM)	. 19
2.3.5.	Building Information Modeling (BIM) Involvement in Project	. 20
2.3.6.	Building Information Modeling (BIM) Software	. 20
2.4. MI	DAS CIVIL 2022	. 21
2.4.1.	Introduction of Midas Civil 2022	. 21
2.4.2.	Advantages and Disadvantages of Midas Civil 2022	. 22
2.4.3.	User Interface of Midas Civil 2022	24
2.5. AU	TODESK <i>REVIT</i> 2023	. 25
2.5.1.	Introduction Autodesk Revit 2023	. 25
2.5.2.	Advantages and Disadvantages of Autodesk Revit 2023	26
2.5.3.	User Interface of Autodesk Revit 2023	27
CHAPTER	III METHODOLOGY	30
3.1. DE	SIGN OF THE RESEARCH	30
3.2. FLO	OWCHART OF THE RESEARCH	32
3.3. IM	PLEMENTATION PROCEDURE	. 33
CHAPTER	IV FINDING AND DISCUSSION	35
4.1. DA	TA COLLECTION	. 35
4.1.1.	Data for Bridge Superstructure	. 35
412	Bridge Substructure Data	38
413	Foundation Data	38
4.2 DF	SIGN OF BRIDGE SUPERSTRUCTURE	39
4.2. DL	Draliminary Design of Bridge Superstructure	30
4.2.2	Structural Analysis of Superstructure Using Mides Civil 2022	
4.2.2.	Approximate Prostrossing Fores and Determination of The Number of Tendon	. 41
4.2.3.	Approximate Prestressing Force and Determination of The Number of Tendon.	
4.2.4.		. 57
4.2.5.	Prestressed Concrete Design Check Using Midas Civil 2022	. 57
4.2.6.	Reinforcement Calculation of Bridge Superstructure Component	. 68

4.2.7.	Other Detailing of Bridge Superstructure
4.3. DE	SIGN OF BRIDGE SUBSTRUCTURE AND FOUNDATION73
4.3.1.	Preliminary Design of Bridge Substructure and Foundation73
4.3.2.	Structural Analysis of Substructure Using Midas Civil 202274
4.3.3.	Stability of Bridge Abutment
4.3.4.	Bearing Capacity of Pile Foundation
4.3.5.	Reinforcement Calculation of Bridge Substructure and Foundation
4.4. 3D	MODELING OF PRESTRESSED CONCRATE BRIDGE USING AUTODESK
REVIT 20	23
4.4.1.	3D Modeling of Bridge Structural Components
4.4.2.	Modeling Reinforcement of Bridge Components
CHAPTER	V CONCLUSION AND SUGGESTION
5.1 CO	NCLUSION
5.2 RE	COMMENDATION
BIBLIOGR	АРНУ
ATTACHM	ENT
	UNTUK KEDJAJAAN BANGSN
	2HG

LIST OF FIGURES

Figure 2.1 Stress Distribution across a Concentrically Prestressed Concrete Section	5
Figure 2.2 Difference Between Prestressed Concrete and Reinforced Concrete	6
Figure 2.3 Prestressed Beam with Parabolic Tendon	7
Figure 2.4 Working Principle on Pre-Tension Method	
Figure 2.5 Working Principle on Post-Tension Method	9
Figure 2.6 Bridge Cross-Section	
Figure 2.7 Prestressed Concrete I-Girder	
Figure 2.8 Names of Bridge Structures	14
Figure 2.9 Building Information Modeling (BIM) Dimension	
Figure 2.10 User Interface Midas Civil 2022	
Figure 2.11 User Interface Autodesk Revit 2023	
Figure 3.1 Bridge Configuration	
Figure 3.2 Flowchart of The Research	
Figure 4.1 Soil Layer and Soil Data	
Figure 4.2 Bridge Cross Section	
Figure 4.3 PCI-Girder Cross-Section Dimensions	
Figure 4.4 Initial view Midas Civil 2022	
Figure 4.5 Material Properties	
Figure 4.6 Time-Dependent Material (Comp. Strength)	
Figure 4.7 Time-Dependent Material (Creep/Shrinkage)	
Figure 4.8 Time-Dependent Material (Material Link)	
Figure 4.9 Section Properties	
Figure 4.10 Structure Type	
Figure 4.11 Prestresses Composite Bridge	
Figure 4.12 Prestresses Composite Bridge (Layout)	
Figure 4.13 Prestresses Composite Bridge (Section)	
Figure 4.14 Prestresses Composite Bridge (Load and Define Traffic Lines)	
Figure 4.15 Prestresses Composite Bridge (Load and Define Vehicles)	
Figure 4.16 Prestresses Composite Bridge (Construction Stage)	
Figure 4.17 Modeling Results of Prestresses Composite Bridge	
Figure 4.18 Moving Load Case	

Figure 4.19 Static Load Cases	50
Figure 4.20 Pedestrian Load	51
Figure 4.21 Wind Load on Structure	
Figure 4.22 Eigenvalue	
Figure 4.23 Aplikasi Lini	53
Figure 4.24 Response Spectrum	
Figure 4.25 Response Spectrum Load Case	54
Figure 4.26 Load Combination	54
Figure 4.27 Perform Analysis	55
Figure 4.28 Position of Tendon	57
Figure 4.29 Tendon Property UNIVERSITAS ANDALAS	
Figure 4.30 Tendon Profile	
Figure 4.31 Add/Modify Tendon Profil	59
Figure 4.32 Results from Tendon Profile (Side View)	59
Figure 4.33 Tendon Prestressed	60
Figure 4.34 Construction Stage	60
Figure 4.35 Section Manager (Reinforcement)	61
Figure 4.36 Approximate Tendon Losses	61
Figure 4.37 Load Combination	
Figure 4.38 Perform Analysis	
Figure 4.39 Design Parameter	
Figure 4.40 PSC Design Material	63
Figure 4.41 Design/Output Position K. E. D. J.A. J.A.A.N.	64
Figure 4.42 Concrate Allowable Stress Load Case	64
Figure 4.43 Perform Design	65
Figure 4.44 Result Table	65
Figure 4.45 Result Table of Checked Stress for Cross Section ar Service Load	66
Figure 4.46 Excel Report	66
Figure 4.47 Result of Excel Report	67
Figure 4.48 Elastomer Bearing Pad	72
Figure 4.49 Pin Connector	73
Figure 4.50 Dimension of Bridge Substructure	74
Figure 4.51 Dimensio of Pile	74

Figure 4.52 Initial View of Midas Civil 2022	. 75
Figure 4.53 Material Properties	. 75
Figure 4.54 Section Properties	. 76
Figure 4.55 Thickness	. 76
Figure 4.56 Create Nodes	.77
Figure 4.57 Create Elements	.77
Figure 4.58 Elastic Link (Rigid)	. 78
Figure 4.59 Define Support	. 78
Figure 4.60 Checking Substructure Modeling by Viewing Displacement Contour	. 79
Figure 4.61 Load Case	. 79
Figure 4.62 Node Load of Loads from the Superstructure	. 80
Figure 4.63 Active Ground Pressure on Back Wall and Breast Wall	. 81
Figure 4.64 Active Ground Pressure on Wingwall	. 81
Figure 4.65 Integral Bridge (Pile Spring)	. 82
Figure 4.66 Response Spectrum of Padang	. 82
Figure 4.67 RS Load Cases	. 83
Figure 4.68 Load Combination	. 83
Figure 4.69 Perform Analysis	. 84
Figure 4.70 Axial - Flexural Interaction Diagram of the Breast Wall	. 87
Figure 4.71 New Project	. 93
Figure 4.72 Worksheets of Autodesk Revit 2023	. 93
Figure 4.73 Creating a Grid	. 94
Figure 4.74 Creating a Level Line KEDJAJAAN	. 94
Figure 4.75 Family PCI-Girder	. 95
Figure 4.76 Family Tendon and Anchor	. 95
Figure 4.77 Family Abutment	. 96
Figure 4.78 Family Diaphragm	. 96
Figure 4.79 Family Sidewalk	. 96
Figure 4.80 Family Barrier	. 97
Figure 4.81 Family Pile	. 97
Figure 4.82 Family Elastomer Bearing Pad	. 97
Figure 4.83 3D Modeling of Bridge Structure	. 98
Figure 4.84 Tendon Position in End of the Span	. 98

Figure 4.85 Tendon Position in the Middle of the Span	
Figure 4 86 View – Section – Detail View	
Figure 4.87 Detail View	
Figure 4.88 Structure – Cover	
Figure 4.89 Structure – Rebar	
Figure 4 90 PCI-Girder Reinforcement	
Figure 4.91 Floor Slab Reinforcement	
Figure 4. 92 Diafragm Reinforcement	
Figure 4.93 Breast Wall and Back Wall Reinforcement	
Figure 4.94 Pile Cap Reinforcement	
Figure 4.95 Approach Slab Reinforcement.	
Figure 4.96 Wing Wall Reinforcement	
Figure 4 97 Pile Reinfo <mark>rcement</mark>	
Figure 4.98 Bridge Reinforcement	

LIST OF TABLES

Table 2.1 BIM software by dimensions	
Table 4.1 Position of Tendon	
Table 4.2 Beam Girder Reinforcement	71
Table 4.3 Floor Slab Reinforcement	71
Table 4.4 Diaphragm Reinforcement	71
Table 4.5 Deck Slab Reinforcement	71
Table 4.6 Deck Slab Reinforcement	
Table 4.7 Back Wall Reinforcement	
Table 4.8 Wing Wall Reinforcement VERSITAS ANDALAS	
Table 4.9 Approach Slab Reinforcement	
Table 4.10 Pile Cap Reinforcement.	
Table 4.11 Pile Foundation Reinforcement.	

LIST OF ATTACHMENT

ATTACHMENT I	Manual Calculation
ATTACHMENT II	Structural Analysis of The Bridge Superstructure Using Midas Civil 2022
ATTACHMENT III	Structural Analysis of The Bridge Substructure And Foundation Using
	Midas Civil 2022
ATTACHMENT IV	Structure Drawing
ATTACHMENT V	Detail Structure Drawing

CHAPTER I INTRODUCTION

1.1. BACKGROUND OF THE RESEARCH

Bridges are one of the important elements in transportation infrastructure that have a strategic role in supporting the smooth mobility of goods and people and improving connectivity between regions. In Indonesia, with the increasing need for infrastructure that can support economic growth, the construction of bridges with longer spans and larger load capacity is becoming increasingly important. One of the solutions widely applied for bridges with medium to long spans is the use of prestressed concrete, which is known to have higher strength and durability than reinforcement concrete. One of the important elements in this system is the PCI (Prestressed Concrete I-Girder) beam. Characterized by high strength, material efficiency, and the ability to cover long spans, PCI beams are frequently used in modern bridge design. (Naaman, 2004).

The design of prestressed concrete bridges using PCI girders offers a variety of significant advantages, both from a technical and economic perspective. One of the main advantages is the ability of the structure to withstand larger loads with smaller dimensions. The process of prestressing the concrete makes the structure more resistant to tensile forces and able to withstand heavier loads, which is very important in the design of bridges that are in areas with high traffic volumes or less-than-ideal geotechnical conditions. In addition, the use of PCI girders as factory-manufactured precast elements allows for better quality control and reduces the risk of errors during construction, speeds up project execution time, and reduces construction costs.

However, despite having many advantages, the planning of prestressed concrete bridges with PCI girders also faces some technical challenges that need to be considered. The proper planning process requires a deep understanding of the behavior of prestressed concrete structures, load distribution, and other factors such as varying soil conditions and traffic loads. In addition, the process of transporting and installing PCI girders requires special attention so that structural elements are not damaged during delivery and installation at the construction site. Therefore, proper design and analysis are essential to ensure that the bridge structure can function optimally and safely in the long term. T.Y. Lin, a pioneer in prestressed concrete engineering, also underlined the importance of innovative approaches in bridge design to ensure structural efficiency and longterm sustainability.

Along with the development of technology in the field of construction, the concept of Building Information Modeling (BIM) has begun to be applied in the planning and construction of bridges. BIM allows designers, engineers, and contractors to collaborate more effectively in a single digital platform that contains all project-related information, from design, and structural calculations, to construction management. In the context of planning prestressed concrete bridges using PCI girders, BIM allows for more efficient integration between structural calculations, material selection, and scheduling and budget coordination. By using BIM, design changes can be implemented more quickly and coordinated, reducing the risk of errors and improving planning accuracy. According to Eastman et al. (2011), BIM enables the integration of all aspects of design and construction, including in prestressed concrete bridge projects.

As part of efforts to improve the quality of infrastructure in Indonesia, this research aims to explore and analyze the planning of prestressed concrete bridges using PCI girders, especially for medium to long bridge spans. This research will examine various aspects of planning, such as the calculation of load capacity, the selection of optimal girder dimensions, as well as the analysis of stress distribution and safety factors. In addition, this research will also integrate the concept of BIM in the planning process to improve efficiency and accuracy. The application of the BIM concept in bridge planning is expected to be a step forward in realizing more modern, efficient, and sustainable infrastructure development.

1.2. **OBJECTIVE AND BENEFITS OF THE RESEARCH**

The objectives to be achieved from this research can be described as follows:

- Planning and designing a prestressed concrete bridge capable of withstanding the loads 1. BAD that may work;
- Implementing the concept of Building Information Modeling (BIM) to assist 2. calculations and modeling in the planning and design of prestressed concrete bridges;
- Producing Detailed Engineering Design (DED) from the Planning and design of the 3. Prestressed Concrete Bridge; and
- Identify and analyze the advantages and disadvantages that can be taken from the 4. application of the Building Information Modeling (BIM) concept in the planning and design of prestressed concrete bridges.

The benefits obtained from this research can be described as follows:

- 1. This research provides in-depth insight into the use of prestressed concrete in increasing the strength and stability of bridges.
- 2. Through this Undergraduate thesis, it is hoped that new guidelines and standards can be created in the design of prestressed concrete bridges, which can be used by professionals in the field of civil engineering.
- 3. By using the Building Information Modeling (BIM) Concept, it is hoped that it can reduce calculation errors from the design of prestressed concrete bridges
- 4. This Undergraduate Thesis will make a significant contribution to academic and practical knowledge about bridge planning and the application of Building Information Modeling (BIM) in the construction industry, The results of the research can be an important reference for academics, practitioners, and students who are interested in the development of modern construction technology.

1.3. SCOPE AND LIMITATION

Scope and limitation of this research by the following:

- 1. The bridge that will be designed on the Superstructure uses the main girder in the form of a PCI-Girder with a span of 40 meters;
- 2. The substructure of the bridge uses 2 abutments without pillars using piles foundations.
- 3. The BIM-based software used in this research is Midas Civil 2022 and Autodesk Revit 2023;
- 4. In this study, Building Information Modeling (BIM) is only used as an assistant for calculation and 3D modeling;
- The BIM-based software used to help analyze the superstructure, substructure, and foundation of the bridge is Midas Civil 2022 with the help of data processing using Excel;
- 6. The soil data used in analyzing the substructure is fictitious;
- The 3D modeling that will be made is a prestressed concrete bridge with BIM-based software used, namely Autodesk Revit 2023; and
- 8. The components modeled are only structural and architectural, while MEP (Mechanical, Electrical, and Plumbing) is not modeled

CHAPTER II REVIEW OF LITERATURE

2.1. PRESTRESSED CONCRETE

2.1.1. Definition of Prestressed Concrete

According to SNI-2847-2019, the definition of concrete is a mixture of Portland cement or other hydraulic cement, fine aggregate, coarse aggregate, and water with or without additional admixture. Concrete is known in the construction world as a mixture of gravel, sand, cement, and water that is resistant to compression, but not resistant to tension. Generally, the value of the tensile strength is approximately (8-14) % of the compressive strength. While steel is a material that is very resistant to tension. By combining concrete and steel where the concrete withstands Compression while the tension is held by the steel will become a material that is resistant to tension and compression known as reinforced concrete. Reinforced concrete is a combination of concrete and steel passively while the combination of high-quality concrete with high-grade steel actively is called prestressed concrete. This active way can be achieved by pulling the steel by holding it to the concrete so it is stressed.

According to ACI (American Concrete Institute), prestressed concrete is structural concrete in which internal stresses have been introduced to reduce potential tensile stresses in concrete caused by loads. Prestressed concrete can be defined as reinforced concrete where internal stress is applied to reduce the potential tensile stress in the concrete resulting from the load, and for twoway slabs using at least minimum prestressed reinforcement (SNI 2847 – 2019). Prestressed concrete is reinforced concrete that has been stressed to reduce the potential tensile stress in concrete due to the application of a working load (Draft Konsensus Pedoman Beton 1998). It can be added that prestressed concrete in the broadest sense, including the state (case) in which the stresses caused by internal strains are compensated to a certain extent, such as in curved constructions (arcs). However, in this research, the discussion is limited to prestressed concrete that uses drawn steel reinforcement and is known as tendons.

2.1.2. General Principles of Prestressed Concrete

According to T.Y. Lin & H. Bruns (1981), three different concepts may be applied to explain and analyze the basic behavior of this form of prestressed concrete,

1. First Concept - prestressed to transform brittle concrete into an elastic material.

Eugene Freyssinet Explained that by giving precompression to the concrete material which is brittle, it will become an elastic material. Concrete that is weak in tension and strong in compression is compressed (generally by steel under high tension) so that the brittle concrete would be able to withstand tensile stress. This can be explained by the image below:

Figure 2.1 Stress Distribution across a Concentrically Prestressed Concrete Section (Source: T.Y Lin & N.H. Burns, 1981)

As a result of being given a compressive force (prestressed force) F acting on the center of gravity of the concrete section, an even compressive stress will arise as follows:

$$\sigma = \frac{F}{A}....(1.1)$$

If M is the external moment at the cross-section due to the load and the self-weight of the beam, then the stress at each point along the cross-section due to M is:

$$\sigma = \frac{Mc}{l}.$$

where c is the distance of the neutral line to the outermost fiber of the cross-section and I is the moment of inertia of the cross-section. If the two stresses due to the pretension force and the tension due to the bending moment are summed, then the maximum stress at the outermost fiber of the crosssection is :

• For the top fiber

 $\sigma = \frac{F}{A} + \frac{Mc}{I}$ (must not exceed the crushing tension of concrete).....(1.3)

• For the bottom fiber

 $\sigma = \frac{F}{A} - \frac{Mc}{I}$ (must not be less than zero).....(1.4)

So, with this internal compressive force, the concrete will be able to bear the tensile load.

2. Second Concept - Prestressed for a combination of high-strength steel with high-quality concrete.

High-quality concrete is the main component of all prestressed concrete elements, while high-quality steel is a commonly used material to generate prestressed forces and supply tensile forces to prestressed concrete. The combination of this system is almost the same as the concept of ordinary reinforced concrete, namely prestressed concrete is a combination of cooperation between prestressed steel and concrete, where concrete resists pressure and prestressed steel resists tensile loads. This can be explained as follows:

Figure 2.2 Difference Between Prestressed Concrete and Reinforced Concrete (Source: T.Y Lin & N.H. Burns, 1981)

In prestressed concrete, the prestressed steel is drawn with a prestressed force T which forms a moment coupling with a compressive force on concrete C to counteract the moment due to external loads. Meanwhile, in ordinary reinforced concrete, the repeating iron resists the tensile force T due to external loads, which also forms a moment coupling with compressive force on concrete C to resist the external moment due to external loads. The combination of cooperation between high-quality steel and high-

quality concrete in prestressed concrete forms a safer and more economical use than in reinforced concrete where the steel is simply planted because the two combine to create a retaining coupling against external forces.

3. Third Concept – Prestressing to Archive Load Balancing

This system uses pretension as an attempt to balance the forces on a beam. In the design of prestressed concrete structures, the influence of pretension is seen as the balance of Self-weight, so that rods that experience deflection such as plates, beams and girders will not experience bending stress in the loading conditions that occur. This can be explained as follows: UNIVERSITAS ANDALAS

A concrete beam on two pedestals (simple beam) that is given a prestressed force F through a prestressed cable with a parabolic trajectory. The load due to the prestressed force that is evenly distributed upwards is stated:

$$W_b = \frac{8.F.h}{L^2}$$

Where : W_b : The load is evenly distributed upwards, due to the prestressed force F

F : Prestressing stress

- h : Sag of parabola
- L : Length of span

The even load due to the downward load will be offset by the evenness force due to the upward stress. The load balancing system can be applied to indeterminate static structures such as in continuous span flat plate construction. This is because the principles of balancing the load on the flat plate are carried out in two directions of tensioning so that in each direction it has an even stress distribution and does not slack due to loading.

The three systems of prestressed concrete mentioned above, are used to analyze the design principles of a prestressed concrete structure.

2.1.3. Types of Prestressed Concrete

There are 2 types of methods of applying prestressed force to concrete, i.e.

1. Pre-Tension Method UNIVERSITAS ANDALAS

This method of , therefore it is called the pretension method. The principles of this method are as follows:

Figure 2.4 Working Principle on Pre-Tension Method (Source: Kontruksi Beton Pratekan, Ir.Soetoyo)

- Stage 1: The prestressed cable (Tendon) is pulled or given a prestressed force and then anchored on a fixed abutment (**Figure 2.4 A**).
- Stage 2: Concrete is cast on the formwork and the base that has been prepared so that it covers the tendon that has been prestressed and allowed to dry (Figure 2.4 B).

Stage 3: After the concrete has dried and aged well enough to receive the prestressed force, the tendon is cut and removed, so that the prestressed force is transferred to the concrete (**Figure 2.4 C**).

Once the prestressed force is transferred to the concrete, the concrete block will curve upwards before receiving the workload. After the workload works, the concrete block will be flattened

2. Post-Tension Method

In the Post-Drawing method, the concrete is cast first, which has previously been prepared with a cable channel or tendon called a duct. Briefly, this method can be explained below,

⁽Sumber: Kontruksi Beton Pratekan, Ir.Soetoyo)

- Stage 1: Concrete is cast with a mold (formwork) that has been provided complete with a prestressed cable channel/sleeve (tendon duct) that is installed curved according to the beam moment plane (**Figure 2.5 A**).
- Stage 2: After the concrete is old enough and strong enough to bear the prestressed force, the tendon or prestressed cable is inserted in the sleeve (tendon duct), and then pulled to get the prestressed force. In this method of applying pretension force, one end of the cable is anchored, then the other end is pulled (pulled from one side). Some are pulled on both sides and

anchored at the same time. After being anchored, the channel is grouted through the hole that has been provided. (**Figure 2.5 B**).

Stage 3: After being anchored, the concrete beam becomes compressed, so the prestressed force has been transferred to the concrete. Because the tendon is installed curved, the tendon tension force gives an even load to the beam in the upward direction, as a result of which the beam curves upwards (Figure 2.5 C).

Therefore, the construction of prestressed concrete must be designed in such a way that it has sufficient strength and the ability to serve according to needs. In addition, the construction must be durable, resistant to fire, resistant to fatigue (for repetitive and variable loads), and meet other requirements related to its use.

2.1.4. Advantages and Disadvantages of Prestressed Concrete

The advantages and disadvantages obtained in the use of prestressed concrete are explained below :

- 1. Advantages of Prestressed Concrete
 - The crack-free state prevents corrosion of the steel rebar.
 - Reduce the tendency of inclined cracks.
 - The structural components have a stiffer rigidity, so the structural elements can be made slimmer.
 - The use of curved tendons gives rise to vertical force components that help bear the shear.
 - The maintenance cost of prestressed concrete is smaller because there are no cracks in the working load condition (avoiding the danger of corrosion).
 - Smaller deflection.
- 2. Disadvantages of Prestressed Concrete
 - The use of high-quality materials results in high unit prices for work.
 - The work of prestressed concrete structures demands higher work precision and stricter supervision.
 - Additional charges are required for transportation.

2.2. CONSTRUCTION OF CONCRETE BRIDGE

2.2.1. Definition and History of Concrete Bridge

A bridge is a construction whose purpose is to continue the road through a lower obstacle which is usually in the form of another road such as a waterway or ordinary traffic (Struyk dan Veen, 1984). A bridge is a construction that functions to connect two road sections that are cut off by an obstacle with a lower surface. These obstacles can be in the form of deep valleys, river channels, lakes, irrigation canals, rivers, railways, uneven horizontal highways, and others. Bridges are the highest investment of all elements that can be found in the highway system. Any damage to the construction of the bridge can cause disturbances in the smooth rotation of the economic wheels and can cause accidents for humans. Types of bridges based on function, location, construction materials, and types of structures today have undergone rapid development by the advances of the times and technology, ranging from simple to advanced construction.

The history of the bridge dates back to ancient times with simple structures such as stone and wood, which aimed to facilitate trade and mobility. In the Middle Ages, the development of construction techniques with stone and iron bridges became landmarks in various European cities. The Renaissance and the Industrial Revolution brought significant innovations with the use of new materials such as steel and concrete, resulting in monumental bridges such as the Brooklyn Bridge and the Tower Bridge. The 20th century marked an era of modernization with the use of prestressed concrete and computerized technology in bridge design, allowing the construction of megastructures such as the Golden Gate Bridge and the Akashi Kaikyō Bridge. Today, BIM technology is central to bridge planning, enabling accurate simulations and high construction efficiency. Bridges are not only vital infrastructure but also a symbol of technological progress and global relations.

2.2.2. Characteristics and Function of Bridge Component

There are various types of components of the bridge, both structural components and architectural components, the following explains the components of the bridge along with the characteristics and functions of the bridge components:

1. Vehicle Floor Slab

It is a part of the bridge construction that directly accepts a load of traffic running on it, which in the planning takes into account the live load/load "T" of the axle pressure of the vehicle and the construction weight it bears (including the weight of the floor itself).

2. Sidewalk

It is a part of the bridge service used for pedestrian facilities, which is located on the left and right edges of the vehicle floor. The floor surface height of the Sidewalk is made higher than the surface height of the vehicle floor wearing course.

3. Barrier

A bridge barrier is a safety feature installed on the edges or sides of a bridge to prevent vehicles or pedestrians from falling off or crashing into obstacles.

4. Girder Beam

It is a part of the bridge construction that functions to carry the floor of the vehicle which then **passes** the loads to the construction part below. Typical girder beams of various shapes, especially for bridge construction, are generally I-shaped or boxshaped (inverted trapezoidal shape).

5. Bridge Pedestal

As part of the bridge placed over the abutment and pier head as the foundation of the main girder. The materials that are often used as this base are cast iron (in the form of rolls and hinges), and super elastic rubber plates coated with steel plates (*bearing* pads).

6. Drainage

The drainage on the bridge functions to drain the water on the floor of the vehicle to the sewer so that it does not flood the floor of the bridge vehicle, which is very disruptive to traffic.

7. Abutment

The part that carries the two bases of the bridge located at the end of the bridge span functions to transfer the entire load of the Superstructure to the foundation/supporting soil, this part is built from reinforced concrete materials or river stone pairs equipped with wing walls.

8. Pier

It is another part of the Substructure located on the bridge span between the base of the bridge, acting like an abutment that divides the load and shortens the bridge span. It is usually constructed of reinforced concrete or long columns (concrete or steel pipes) and on top of it is a pillar head. 9. Foundation

The foundation functions to distribute and even the load from *the Abutment* to the supporting soil. The use of the type of foundation depends on the condition of the supporting soil.

2.2.3. Classification of Concrete Bridge According to Superstructure Type

Based on the shape or type of bridge structure, bridges are distinguished from the shape of the main girder structure which supports all elements of the bridge structure and transfers all structural loads that are directly related to the substructure. The shape of the bridge structure consists of:

1. Reinforced Concrete Monolith Beam Bridge

It is a reinforced concrete bridge that between the Main Girder and the floor slab is cast together and fused as a "T" Beam. The whole structure consists of Beams and floor slabs, which are also often installed between the beam child beams or diaphragm beams, as shown in the following picture.

Figure 2.6 Bridge Cross-Section (Source: Panduan Praktis Perencaan Teknis Jembatan)

2. Prestressed Concrete Beam Bridge

The main girder of this bridge is a reinforced concrete beam that is pre-tensioned from the cable installed in such a way that the entire live load of the bridge can be countered by the pretension obtained from the cable pulling in the tendons placed in the beam. This bridge is often used on bridges with relatively long spans, such as mono-rail overpasses, and many others.

2.2.4. Structure of Concrete Bridge

1. Superstructures of The Bridge

The bridge superstructure is the part that receives the direct load which includes its own weight, dead load, additional dead load, vehicle traffic load, brake force, pedestrian load, etc.

The Superstructure of a bridge generally includes:

- 1) Sidewalk:
 - a. Backings or barriers,
 - b. Kerb
 - c. Sidewalk floor slabs.

- 2) Vehicle floor slabs,
- 3) Girder
- 4) Diaphragm,
- 5) Bearing.
- 2. Substructure of The Bridge

The substructure of the bridge functions to bear all the load of the superstructure and other loads caused by soil pressure, water flow, and drift, impact, friction on the support, to then be channeled to the foundation. Furthermore, these loads are channeled by the foundation to the subsoil.

The Superstructure of a bridge generally includes:

3. Foundation

The bridge foundation functions to transfer the entire load of the bridge to the ground. Based on the system, the Abutment foundation or bridge pier can be divided into several types, including:

- 1) Spread footing,
- 2) Caisson,
- 3) Pile foundation,
- 4) Log Pile,
- 5) Steel Pile,
- 6) Reinforced Concrete Pile,
- 7) Precast Prestressed Concrete Pile,

- a. Concrete Cast in Place,
- b. Composite Pile.

2.3. BUILDING INFORMATION MODELING (BIM)

2.3.1. Definition Building Information Modeling (BIM)

Building Information Modeling (BIM) is a digital representation that contains data, objects, and facilities that can produce 3D shapes and data that can be processed by users to be extracted and analyzed against information that will be used to improve work efficiency (Associated General Contractors of America/AGC, 2005). Building Information Modeling (BIM) is a technological development in the field of AEC (Architecture, Engineering, and Construction). The resulting modeling is in the form of precise geometry and accurate data to support construction activities (Eastman, 2008). BIM or Building Information Modeling is a system or technology that includes some important information in the *Design, Construction, and Maintenance* process that is integrated into 3D modeling (Sacks et al., 2018) (Eastman et al., 2011).

According to the PUPR team and the BIM Institute in Indonesia, Building Information Modeling (BIM) is one of the developments in the construction industry that digitally presents the physical and functional characteristics of a building (Indraprastha, 2018). Therefore, each element of the building contains all the information in the development project in the form of a database (working drawings, scheduling, cost estimation, etc.) which is used as a basis for decision-making in the life cycle time curve of the building, from the initial concept to demolition. Based on the experts' opinions above, it can be concluded that Building Information Modeling (BIM) is a unit of technological devices with all processes in it working in an integrated manner on a digital model which will later be interpreted as a three-dimensional form. The system then manages and generates construction data by using 3D, real-time, and dynamic modeling software to increase the productivity of its design and construction.

2.3.2. History and Development of Building Information Modeling (BIM)

BIM was introduced in the late 1970s by Prof. Eastman at The Georgia Tech of Architecture, in an AIA (American Institute of Architects) journal entitled "Building Description System", then Robert Aish published a journal in 1986 with the title "Building Modeling: The Key to Integrated Construction CAD". In 1992, the term Building Information Modeling was first mentioned in a paper written by G.A. Van Nederveem and F. P. Tolman 1992. After a conference

in 2005 that discussed the new term replacing Computer-Aided Design (CAD) technology, Jerry Laiserin, an industry analyst, argued that the most appropriate term was Building Information Modeling (BIM).

BIM or Building Information Modeling became popular in 2002 after Autodesk released a paper titled Building Information Modeling. The term Building Information Modeling resurfaced in mid-2005 when the US General Services Administration (GSA) decided to build a new courthouse in Jackson, Mississippi with a total area of 410,000 ft2 (Dinas Pekerjaan Umum, 2020). Since then, 2D (two-dimensional) software has been used to design and document all construction phases while GSA has asked its staff to switch from 2D to a 3D (three-dimensional) approach.

Meanwhile, in Indonesia, BIM is quite new in the construction industry with very limited use. Companies such as *PT. Pembangunan Perumahan* and *PT. Total Bangun Persada* is a company that has started to implement the use of BIM. After several years of BIM being implemented in Indonesia, the results are not optimal because its use is only limited to how to streamline labor needs, costs, and time. What can be done to maximize the use of BIM is to straighten out the mindset related to BIM where BIM is not only related to the use of BIM *software* but also how to manage the use of each BIM *software* so that it can achieve the desired goals.

2.3.3. Building Information Modeling (BIM) Dimension

BIM is a system, management, method, or sequence of work on a project that is applied based on related information from all aspects of the building that is managed and then projected into a 3-dimensional model (*Tim PUPR dan Institut BIM di Indonesia*, 2018). The concept of BIM envisions virtual construction before actual physical construction, to reduce uncertainty, improve safety, solve problems, and analyze potential impacts (Smith, Deke 2007). By using BIM, 3D, 4D, 5D, 6D, and even up to 7D information can be obtained, with the explanation as below.

Figure 2.9 Building Information Modeling (BIM) Dimension (Source: <u>Piranusa.com</u>)

1. BIM 3D (Modeling)

3D BIM can be said to be 3-dimensional modeling driven from the x, y, and z axes and is also referred to as coordinated modeling. The resulting 3d model can be used for schematic design, construction documentation, and visualization of objects which helps to check for errors in drawings.

2. BIM 4D (Time/Scheduling)

In BIM 4D can reveal additional information on the model in the process of scheduling for work and is often referred to as the time element. This process usually comes in the form of detailed data plus supporting components. So that it will be able to produce better planning quality.

3. BIM 5D (Cost Estimating)

BIM 5D is a cost estimation that is integrated into the scheduling of 3D object designs. With this system, you can predict the flow of costs that will likely be incurred from the modeling. You can also modify the cost at a specific time as a result of unforeseen circumstances such as design changes and other modifications.

4. BIM 6D (Sustainability, Collision Detection, and Energy Analysis)
6D BIM can be referred to as integrated BIM or energy analysis in buildings. This BIM involves adding other relevant information to support the management and operation of the facility in the expectation of a better result and is also able to reduce the overall energy consumption of the 3D CAD component with all aspects of management information.

5. BIM 7D (Facility Management Application)

BIM 7D is used in the operation and maintenance of building facilities integrated with 7D CAD simulation to optimize asset management from the design process to demolition.

2.3.4. Benefit of Building Information Modeling (BIM)

Here are some of the benefits of using Building Information Modeling (BIM) in Construction Projects,

- 1. BIM has a 3-dimensional visual so that it makes it easier to understand the drawing plan to be built. The use of BIM will make it easier to calculate the volume of work quickly and accurately (Deni Deni et al., 2019).
- 2. BIM will provide cost information or Cost Budget Plans for each component of the work so that we can predict the estimated cost of one component of the work.
- 3. BIM is able to display 3-dimensional drawings on complex works such as ironing bridge structures, and other complex construction works. The use of BIM is not only to display building animation images but rather to the managerial project information quickly and accurately.
- 4. The use of BIM at the beginning of the work is used as a clash detection (Smith, 2007). We can find out whether this 2D plan drawing if it will be applied in the field will be a clash or not, especially between structural, architectural, and MEP (mechanical, electrical, plumbing) drawings.
- 5. Another benefit of using BIM is the coordination between contractors and owners or consultants easily anywhere and anytime. BIM will be uploaded to a cloud computer service that can be accessed by the owner. The owner will check the image through a cloud computer service and provide Marking if there is a mistake.

2.3.5. Building Information Modeling (BIM) Involvement in Project

One of the main goals of BIM technology is to support all processes starting from the preconstruction stage to the maintenance stage at the entire building lifecycle. The advantages of using BIM from each stage of project development are (Ramadiaprani, 2012):

- Pre-Construction Stage: In the pre-construction stage, *the owner* tries to determine/estimate the size of the project according to the available project budget. Project estimates at this stage are still very rough. Using BIM, the estimated building model can be linked to a database and the project price cost will be calculated directly. In the initial stage, only model schemes are used and function to evaluate the function of the building. This can define the direction of project development right at the initial stage which can improve the overall quality of the building.
- 2. **Design Stage**: The design stage is a collaboration between the construction team and engineers, architects, and *owners*. At this stage, BIM must be implemented immediately. If the architect only provides 2D drawings, then the construction manager must convert the 2D drawings into 3D drawings. This coordination effort aims to reduce design errors and to better understand the work to be done.
- 3. **Construction and Fabrication Stages**: Aim to simulate the construction process, visualize how buildings will be built day by day with 4D models, and find potential problems faced so that repairs can be made. BIM technology allows you to identify clashes before construction takes place, which can speed up the construction process, and reduce the risk of project costs rising due to clashes and the need for solutions to correct errors. During construction, there may be design changes, thus updating the estimated cost and implementation schedule. BIM technology can facilitate the fabrication process. The 3D elements of the model can be sent to the production process element factories automatically.
- 4. **Maintenance Stage**: BIM models are full of information that can be useful for establishing operational processes. This can support the monitoring of the project control system.

2.3.6. Building Information Modeling (BIM) Software

Software BIM dapat dipakai tergantung pada dimensi apa yang digunakan. Software tersebut meliputi dimensi 3D BIM (Modeling), dimensi 4D BIM (Time/Scheduling), dimensi 5D

BIM (Cost Estimating), dimensi 6D BIM (Sustainability, Collosion Detection, dan Energy Analysis), dan dimensi 7D BIM (Facility Management Application). Beberapa software BIM yang dapat digunakan berdasarkan dimensinya dapat dilihat pada Tabel 2.2 berikut.

Dimensi	Fungsi	Software			
3D	Modeling	Autodesk Revit, Graphisoft®			
		ArchiCAD, Bentley® Architecture,			
		Tekla® Structures, etc.			
4D	Time/Scheduling	Autodesk Navisworks, Synchro,			
	UNIVERSITAS	Navigator, Vico Control, etc.			
5D	Cost Estimating	Autodesk® Quantity Takeoff, etc.			
6D	Sustainability, Collision	Autodesk Ecotect Analysis,			
	Detection, and Energy	Autodesk Green Building Studio,			
	Analysis	Graphisoft EcoDesigner, etc.			
7D	Facility Management	Bentley Facilities, Vintocon			
	Application	ArchiFM (For ArchiCAD), Onuma			
		System, EcoDomus, etc.			

Table 2.1 BIM software by dimensions

In this discussion, the *software* that will be used is *Autodesk Revit* which works at the modeling stage.

BANGS

2.4. MIDAS CIVIL 2022

2.4.1. Introduction of Midas Civil 2022 DJAJAAN

Midas Civil is one of the most commonly used bridge design and analysis software today that combines the power of modeling with exclusive analysis features and makes bridge modeling and design efficient for engineers. Midas Civil provides more practical features for simpler and more flexible bridges to handle complex geometries. The software includes a variety of design guidelines that are very useful for engineers looking for the ideal design. Midas Civil will ease the work of engineers and make bridge design more accessible through this software(Midas, 2022)

MIDAS Civil is a program created for structural analysis and structural design in the field of civil engineering. This software is devoted to the introduction of structural planning systems which includes analysis and how to optimize a design specifically in bridge planning. MIDAS Civil is a solution to optimize the planning of a bridge structure and other types of structures. This software has the ability to analyze types of structures such as prestressed concrete, suspension bridges, cable bridges and other conventional bridges This program can be applied to several types of areas or projects, such as:

- Analysis and planning for all types of bridges such as bridges with reinforced concrete structures, steel, composite, prestressed, suspension, and cable bridges.
- Heat analysis of hydration from concrete such as abutments, piers, breakwater, and foundations.
- Underground structures
- Industrial and factory facilities SITAS ANDALAS
- Public facilities such as ports, airports, railway stations, dams and other transportation facilities

2.4.2. Advantages and Disadvantages of Midas Civil 2022

The disadvantages and shortcomings in the use of Midas Civil in conducting structural analysis are explained below,

- 1. Advantages of Midas Civil 2022
 - Friendly User Interface, The User Interface can be directly linked to the User's flexibility to model and make changes to it. The Midas Civil GUI is designed to give users complete freedom and convenience when modeling bridges.
 - Intuitive modeling, Midas Civil provides users with unlimited and efficient modeling methods for any project. Creating nodes and elements, such as CAD programs, as a conventional modeling approach as well as having the Bridge Wizards feature can create a complete bridge model for you in the blink of an eye, and one can make any modifications to the model, thus giving complete freedom to its engineers. Other efficient approaches, such as CAD import, table format modeling, and code format modeling are also available.
 - Complete Analysis Options, As one of the best structural design and analysis software, Midas Civil performs all the essential analyses required for primary bridges, such as Moving Load Analysis, Construction Stage Analysis, EigenValue analysis, and Linear and Non-Linear Analysis. But when high-level analysis is required for complex bridges such as Bend Analysis, Cable Style Tuning, Rail

Structure Interaction, and Completion Analysis, it can also be done easily on Midas Civil.

- **Provides accurate results**, load combinations based on specified design standards and can provide results that are compatible with MS Excel, which allows for easy extraction of results, and users can review all analysis and design results systematically.
- 2. Disadvantages of Midas Civil 2022
 - Limitations in Integration with Other Software, Although Midas Civil provides a wide range of features for structural design and analysis, its integration with other software in BIM workflows or for specific analysis may not be as comprehensive as more integrated solutions.
 - Requires High Hardware Specifications, To run Midas Civil smoothly, it is often necessary to have strong enough hardware specifications. This includes the need for fast processors, adequate RAM, and graphics cards capable of handling intensive graphics processing. Users who do not have adequate hardware may experience slow performance or other issues.
 - Training Cost and Availability, The use of Midas Civil often requires a high initial investment in terms of software licensing and also the cost for appropriate training. This can be a barrier for small companies or individual users who are new to the industry.

2.4.3. User Interface of Midas Civil 2022

Figure 2.10 User Interface Midas Civil 2022 (Source: <u>Manual.Midasuser.com</u>)

The following is an explanation of each part of the Midas Civil 2022 Interface listed in Figure 2.6,

1. Main Menu

The Main Menu accommodates all the commands and shortcut keys that are required for operating Midas Civil.

2. Tree Menu

A series of work processes, from modeling to analysis, design, and generation of calculation sheets, are listed systematically. The Tree Menu guides the required procedure and invokes the relevant dialog box so that even a beginner, as well as an expert, can efficiently perform the work without an error.

3. Tree Menu 2

Simultaneously used with the Tree menu, Work tree, and Group information can be examined more conveniently. In addition, it boosts efficiency by providing an element and boundary input dialog box with a Work tree simultaneously.

4. Stage Step

Using this drop-down menu, Construction Stage can be easily chosen for checking a structure by stages.

5. View Navigation

Useful for displaying modeling from different perspectives

6. Toolbar

It contains a menu icon that symbolizes each function, which allows easy access to frequently used menus. In addition, similar icon menu types are grouped by tabs (Tabbed Toolbar)

7. Task Pane

Useful for displaying work procedures for advanced analysis functions and description of input items, allowing users to work easily.

8. Context Menu

Simply right-click on the top of the model window to run the context menu to use the tools we use frequently depending on the work situation, the selected entity, and the click location to reduce mouse movement.

9. Table Window

Table Window generates various data inputs and analysis results in the form of spreadsheet-formatted tables, similar to MS Excel.

10. Message Window

Useful for displaying various information and warning or error messages that are useful for modeling and analysis.

11. Command Line

Useful for Inserting Command Keys to execute Commands.

12. Status Bar

It is useful to display the coordinates according to each coordinate system, and unit system, select filtering options, control the location of element snaps, etc., which will improve the working efficiency.

2.5. AUTODESK *REVIT* 2023

2.5.1. Introduction Autodesk Revit 2023

Autodesk Revit 2023 is one of the BIM-based software that can be used to design, document, schedule, operate, and maintain an infrastructure building (Autodesk, 2020). Autodesk Revit 2023 is one of the BIM-based software that is useful in 3D modeling so that it produces a

document needed to design a building, both in terms of structure, architecture, and MEP (Mechanical, Electrical, and Plumbing). In *Revit* modeling, each 2D, 3D, and scheduling drawing sheet represents information from the same virtual building model. As the user works on a building model, *Revit* gathers information about the modeling of the building and coordinates this information across the rest of the modeling representations.

2.5.2. Advantages and Disadvantages of Autodesk Revit 2023

The advantages and disadvantages of using Autodesk Revit 2023 are explained below,

- 1. Advantages of Autodesk Revit 2023
 - Objects Loaded with Technical Information, no matter how many times we use the object in the design, the data will be summarized in the *Revit system* such as the quantity, total weight, total material requirements, and the amount of price.
 - Ease of Forming Objects, architects can experiment with uncommon building shapes, Revit will convert these shapes into wall panels, floor panels, and roofs so that the effectiveness of the building will be immediately analyzed by the contractor without having to go through a time-consuming manual drawing process.
 - Reduced Obstacles in Teamwork, Worksharing that Revit brings to ease of working in a team is very useful for medium and large-scale projects. By using this feature accompanied by a computer network, all tasks of each discipline can be integrated virtually. Changes made by one person will be updated in other work units.
 - Revisions That Don't Take Up Much Time, Cost, & Effort, Revit which stands for Revise Instantly means revising instantly. Revisions will have a lot of impact on big projects because they will all be interconnected.
 - Rapid & Precise Drawing Production, The sheets that Revit produces are not separate sheets, but sheets that are integrated.
 - Connections Between Autodesk Software, Output from Revit can be extracted and read well by other Autodesk software.
 - Better Communication with Clients, By using Revit, architects and contractors can present quality displays that represent their designs to clients
- 2. Disadvantages of Autodesk Revit 2023
 - need for high hardware specifications, Like many modern design software, Revit requires adequate hardware specifications to run smoothly, especially when working with large or complex models

- Expensive license prices, Initial investment in Revit licensing can be expensive, especially for small companies or individuals who are just starting out in the industry.
- In its use, new family materials must be made according to the design and size needed

2.5.3. User Interface of Autodesk Revit 2023

Figure 2.11 User Interface Autodesk Revit 2023 (Source: <u>www.knowledge.Autodesk.com</u>)

Below is an explanation of each part of Interface Autodesk Revit 2023 according to the number listed in **Figure 2.11** above,

1. Revit Home

Use Revit Home to access and manage information related to your models.

2. File Tab

The File tab provides access to common file actions, such as New, Open, and Save. It also allows you to manage files using more advanced tools, such as Export and Publish.

3. Quick Access Toolbar

The Quick Access toolbar contains a set of default tools. You can customize this toolbar to display the tools that you use most often.

4. InfoCenter

InfoCenter provides a set of tools that enable you to access many product-related information sources.

5. Options Bar

The Options Bar is located below the ribbon. It displays conditional tools dependent on the current tool or selected element.

6. Type Selector

The Type Selector identifies the currently selected family type and provides a dropdown from which you can select a different type.

7. Properties Palette

The Properties palette is a modeless dialog where you can view and modify the parameters that define the properties of elements.

8. Project Browser

The Project Browser shows a logical hierarchy for all views, schedules, sheets, groups, and other parts of the current project. As you expand and collapse each branch, lower-level items display.

9. Status Bar

The status bar provides tips or hints on what to do. When you highlight an element or component, the status bar displays the name of the family and type.

10. View Control Bar

The View Control Bar provides quick access to functions that affect the current view.

11. Drawing Area

The drawing area (canvas) displays views (and sheets and schedules) of the current model. Each time you open a view in a model, the view displays in the drawing area.

12. Ribbon

The ribbon displays when you create or open a file. It provides all the tools necessary to create a project or family.

13. Tabs on the ribbon

Contains what tabs are on the Ribbon and contains tools that are suitable for their respective functions.

14. A contextual tab on the ribbon, providing tools relevant to the selected object or current action

Contains tabs that provide tools relevant to the object in the form of an element or component that is currently selected or what is currently being worked on.

15. Tools on the current tab of the ribbon

the current tab of the ribbon Contains tools that are useful in working and has been grouped by each tab.

16. Panels on the ribbon

CHAPTER III DESIGN AND PROCEDURE

3.1. DESIGN OF THE RESEARCH

The bridge that will be designed and will be made in 3D modeling is a prestressed concrete bridge using girder beams in the form of PCI-Girder. The bridge to be designed consists of 3 parts, namely, superstructure, substructure, and foundation. The bridge has a length of 40 meters and a width of 10 meters with a superstructure bridge configuration as shown in the picture below.

Then here are some criteria that need to be considered in bridge planning, including the following.

- 1. Rules and guidelines used;
- 2. Materials/materials used;
- 3. Methods and assumptions in calculations;
- 4. Methods and assumptions in determining the type of superstructure,
- 5. Methods and assumptions in determining the type of substructure and foundation
- 6. Field data collection;
- 7. The computer program used; and

8. The method of checking is carried out.

The guidelines used in the planning of this bridge are by the following standards.

- 1. SNI 1725 2016 Pembebanan Untuk Jembatan;
- 2. SNI 2833 2016 Perencanaan Jembatan Terhadap Beban Gempa;
- 3. Panduan Praktis Perencaan Teknis jembatan (No. 02/M/BM/2021)
- 4. Manual Perencanaan Struktur Beton Bertulang Untuk Jembatan (No. 009/BM/2008)
- 5. RSNI T-12-2004 Standar perencanaan struktur beton untuk jembatan;
- 6. SNI 2847 2019 Persyaratan Beton Struktural Untuk Bangunan Gedung
- 7. Permen PUPR No.5 Tahun 2023 tentang Persyaratan Teknis Jalan dan Perencanaan Teknis Jalan;
- 8. SNI 8460 2017 Persyaratan Perancangan Geoteknik;
- 9. Permen PUPR No. 10 Tahun 2022 tentang Penyelenggaraan Keamanan Jembatan Dan Terowongan Jalan
- 10. AASHTO LRFD Bridge Design Specifications 2020
- 11. Building Code Requirements for Structural Concrate (ACI 318M-14) And Commentary (ACI 318RM-14)
- 12. FHWA NHI-05-042 Design and Construction of Drive Pile Foundation
- 13. BMS 92 Bridge Design Code vol 1 dan 2; dan
- 14. BMS 92 Bridge Manual Design vol 1 dan 2;

3.2. FLOWCHART OF THE RESEARCH

The flowchart of this research can be seen as shown in Figure 3.2 below

Figure 3.2 Flowchart of The Research

3.3. IMPLEMENTATION PROCEDURE

1. Literature Study Stage

This literature study can be done by searching and studying various information related to the Research work related to prestressed concrete bridges and BIM, both from journals on the internet and the Help feature provided by Midas and *Autodesk* to help understand the use of the *software*.

2. Data Collection Stage

The data needed for the work of this Research includes Detailed Engineering Design (DED) drawings of various existing Prestressed Concrete bridges (all spans and widths), soil data needed for the planning of the substructure and foundation, and data on bridge planning guidelines according to existing standards.

3. Preliminary Design Stage

In planning the components of the concrete structure, it is necessary to carry out a preliminary design to determine the initial dimensions of the Superstructure, Substructure, and foundation of the Bridge to facilitate its planning.

4. Structural Analysis Stage of Bridge Structure with Midas Civil 2022

This stage is useful for getting the Internal force acting on the bridge structure based on the load acting on the bridge. The internal force generated is useful for the stage of approximating prestressed concrete and determining the number of tendons required by the girder beam, the stage of calculating the reinforcement, and the reaction force generated by the superstructure of the bridge will be used as a load to analyze the substructure of the bridge. To assist in the calculation of the force in the analysis of the structure of the Bridge using Midas Civil.

- 5. Approximate of Prestressed Force and Determination of the Number of Tendons Stage Concrete has excellent strength in resisting pressure, but is weak in resisting tension. Therefore, a useful tendon is needed to provide an internal force to the beam to counter the external force received by the beam. Calculations in designing the right tendons can ensure that the structural elements can withstand the load as designed.
- 6. Design Check Stage on Prestressed Concrete

Stress checks on prestressed concrete have several crucial uses that support structures' success, safety, and durability. Stress checks help ensure that the stress applied to the tendon is following the design, thus preventing potential structural failure due to improper or excessive stress. The things that are checked at this stage are the inspection of prestressed force loss, the inspection of the allowable stress on concrete, and the inspection of bending and shear capacity. If the value result at this stage is not as allowed, then it is necessary to recalculate the Approximate Prestressed Force and Determination of the Number of Tendons

7. Control Stage of Abutment Stability and Foundation Bearing Capacity

Control of abutment stability and foundation bearing capacity are two important aspects of bridge planning. The abutment stability ensures that the abutment can safely withstand external loads and forces without experiencing damage or shifting, whereas the foundation bearing capacity is the ability of the soil or base material to support the load passed from the structure to the ground without experiencing failure. If the abutment stability and the foundation bearing capacity do not meet the allowable values, we need to do a preliminary design of the abutment or foundation again.

8. Calculation Stage of Bridge Reinforcement

NTUK

The calculation stage of bridge reinforcement is a critical part of the design process to ensure the bridge's safety, stability, and durability. This stage involves detailed structural analysis to determine the loads the bridge will be subjected to and the amount of reinforcement needed to handle those loads.

9. 3D Modeling Stage

The bridge modeling carried out in this Final Project uses Autodesk Revit 2023, both structural modeling and architecture of each item on the building. This can be done by utilizing the features available in the software used to find out what data and processes can be done in the modeling.

10. Conclusion

The conclusion from this research is to obtain a Detailed Engineering Design (DED) from the design of a prestressed concrete bridge that can withstand the working load and make a 3D model of the bridge.

KEDJAJAAN BANGSA

CHAPTER IV FINDING AND DISCUSSION

4.1. DATA COLLECTION

The bridge that will be planned and designed with the implementation of the Building Information Modeling (BIM) concept is a prestressed concrete bridge with a span of 40 meters divided into three main parts, namely the Superstructure, the Substructure, and the Foundation. Planned and designed bridges can be classified based on several categories as follows :

- 1. According to their function, bridges are classified as highway bridges;
- 2. According to the material, the bridge is classified as a concrete bridge;
- 3. According to the classification, bridges are classified as prestressed concrete bridges;
- 4. According to the structural support system, bridges are classified as simple pedestal bridges; and
- 5. According to the cut plane, bridges are classified as straight bridges.

4.1.1. Data for Bridge Superstructure

Based on *Kriteria Desain Jembatan Standar* at point 3.2.1.g about *Perencanaan Bangunan Atas Jembatan yang isinya* "If it is not specifically planned, it can be used for buildings on Bina Marga standard bridges (Standard Drawing) according to the economic span and water traffic conditions below such as: Prestressed concrete girder type I span 16 to 60 meters" then with a span length of 40 meters, the building on the bridge is chosen, namely the Prestressed Concrete Bridge using PCI-Girder

Based on Letter of *Bina Marga No.05/SE/Db/2017* concerning "*Kriteria Desain Jembatan Standar*" in point 3.2.1.g concerning "*Perencanaan Bangunan Atas Jembatan*" which reads "If it is not specifically planned, the building on the *Bina Marga* standard bridge (standard drawing) can be used according to the economic span and water traffic conditions below such as Type Prestressed Concrete I-Girder (PCI-Girder) span 16 to 60 meters", then with a span length of 40 meters, the bridge building is chosen, namely the Bridge Prestressed Concrete

Prestressed Concrete Bridge will be planned and designed its Superstructure with the following general data.

1. Type Concrete bridge structure, namely type prestressed concrete type PCI-Girder

- 2. The track type under the bridge is a river
- 3. The length of the bridge is 40 meters
- 4. The bridge to be designed has a width of 10 meters with the division The bridge has 2 lanes with a width of 3.5 meters and has two barriers and a sidewalk on the left and right sides of the bridge with a width of 1.5 meters (0.5 m barrier and 1 meter sidewalk)
- The barrier has a height of 1.25 meters with a customized shape made of concrete fc'= 30 MPa (Specific gravity = 24 kN/m)
- The sidewalk has a thickness of 0.25 meters with a customized shape made of concrete fc'= 20 MPa (Specific gravity = 24 kN/m)
- 7. The wearing surface on the bridge uses asphalt with a thickness of 50 mm (Specific Gravity = 22 kN/m)UNIVERSITAS ANDALAS
- 8. The diaphragm has a thickness of 0.20 meters with a customized height and width according to PCI-Girder Shape.

Prestressed concrete bridges will be designed using the following material specifications :

1.	Beam Girder Material Data				
	• Compressive Strength of Concrete at 28 Days	fcg	=	50	MPa
	Compressive Strength of Concrete During	fcig	-	0.8 f cg	MPa
	Stressing		=	40	MPa
	• Modulus of Elasticity of Concrete at 28 Days	Ecg	7	4700√f cg	MPa
		_	-	33234.02	MPa
	Modulus of Elasticity of Concrete During	Ecig	Ξ	$4700\sqrt{fcg}$	MPa
	Stressing KEDJAJAAN	DANG	SAL	29725.41	MPa
	Specific Gravity of Concrete	γс	=	25	kN/m ³
2.	Floor Slab Material Data				
	• Compressive Strength of Concrete at 28 Days	f`cd	=	30	MPa
	Compressive Strength of Concrete When	f`cid	=	25	MPa
	First Loaded				
	• Modulus of Elasticity of Concrete at 28 Days	Ecd	=	$4700\sqrt{fcg}$	MPa
			=	33234.02	MPa
	• Modulus of Elasticity of Concrete When First	Ecid	=	$4700\sqrt{fcg}$	MPa
	Loaded			29725.41	MPa

•	Specific Gravity of Concrete	$\gamma c = 24$	kN/m^3
---	------------------------------	-----------------	----------

3. Prestressed Steel Material Data

	• Type of Strand	Sever	n Wi	re Strand, I	Low Relaxation
	Pre-Stressed Steel Grade	AST	M 41	6-250 (Noi	rmal)
	• Diameter of Strand	Dps	=	12.70	mm
	Cross-Sectional Area of Strand	Aps	=	98.71	mm ²
	• Tensile Strength of Pre-Stressed Steel	fpu	=	1860	MPa
	• Yield Strength of Pre-Stressed Steel	Fpy	=	0.9 fpu	
	Modulus of Elasticity of Pre-Stressed Steel	Eps	=	1674 197000	MPa Mpa
	Jacking Force	Fbt	=	0.75 fpu	
			=	1395	MPa
4.	Steel Reinforcement Material Data				
	Steel Reinforcement Grade (for $D \ge 13 \text{ mm}$)	: BJ7	TD 4	2	
	• Yield Strength of Reinforcement Steel	fy	-	420	MPa
	Yield Strength of Reinforcement Steel	fu	=	525	MPa
	• Yield Strength of Reinforcement Steel	Es	=	200000	MPa
	Steel Reinforcement Grade (for D < 13 mm)	: BJT	D 24	1	
	• Yield Strength of Reinforcement Steel	fy	=	420	MPa
	Yield Strength of Reinforcement Steel	fu	=	525	MPa
	Yield Strength of Reinforcement Steel	ES	G\$	200000	MPa
	219	2			
5.	Elastomer Bearing Pad (Support)				
	• Length of Elastomer Bearing	L	=	600	MPa
	• Width of Elastomer Bearing	W	=	600	MPa
	• Thickness of Elastomer Bearing	Н	=	97	MPa
	Shape Factor	S	=	10	
	Compressive Stiffness	SDc	=	1.56E+06	kN/m
	Shear Stiffness	SDs	=	3.85E+03	kN/m
	Allowable Compressive Strength	Pn	=	4220	kN

4.1.2. Bridge Substructure Data

The main function of the building bridge Substructure is to channel all the loads acting on the bridge Superstructure to the foundation or ground. The substructure to be planned and designed has the following general data.

- The river that passes under the bridge has a calm current and does not sink under drifting objects so that it does not affect the load on the substructure too much or can be considered non-existent.
- 2. The soil parameters used to analyze the substructure have the following data.
 - Specific Gravity of Soil $\gamma_{soil} = 22 \text{ kN/m}^3$
 - Angle of Internal Friction $\phi_{AS} = 30^{\circ}$
 - Cohesion of Soil C = 10 kN/m^2
- 3. The material of the substructure used has the following data.
 - Compressive Strength of Concrete f'c = 30 MPa
 - Steel Reinforcement Grade for $D \ge 13 \text{ mm}$ BJTD 42
 - Steel Reinforcement Grade for D < 13 mm BJTP 24

4.1.3. Foundation Data

The foundation is the part of the bridge that passes the load directly to the soil or rock. The type of foundation used is determined based on soil conditions in the form of NSPT data. The NSPT data used in the foundation design are shown in the figure below.

Figure 4.1 Soil Layer and Soil Data

Based on the data seen in the image above, the soil surface has soft soil and soil depth with sufficient bearing capacity at a depth of 6 meters. According to FHWA NHI-05-042 Design and Construction of Driven Pile Foundation, page 7-4, the type of foundation that matches the soil conditions is the pile foundation. The data from the pile foundation used is as follows.

- 1. The material of the foundation used has the following data.
 - Compressive Strength of Concrete f'c = 30 MPa

D =

0.8

1800

mm

m

- Steel Reinforcement Grade for $D \ge 13 \text{ mm}$ BJTD 42
- Steel Reinforcement Grade for D < 13 mm BJTP 24
- 2. The dimensions of the pile foundation used have the following data.
 - Diameter of Foundation
 - Depth of Foundation H = 15 m

4.2. DESIGN OF BRIDGE SUPERSTRUCTURE

4.2.1. Preliminary Design of Bridge Superstructure

Based on Table 4.1 concerning *tinggi minimun struktur atas* in *Panduan Praktis Perencaan Teknis Jembatan Volume 2* (2021), the initial height of the deck system for the simple span Prestressed Concrete I-Girder Bridge is 0.045L, where L is the length of the bridge,

Bridge Length L = 40.00 m
Minimum Height of Deck System hd = 0.045. L mm

To determine the spacing between girders, the thickness of the plates and the number of girders used can refer to table 3.6.2.2.2b-1 in *Peraturan Perencanaan Teknik Jembatan Bagian 3* (2017). Based on table 3.6.2.2.1-1 in *Peraturan Perencanaan Teknik Jembatan Bagian 3* (2017) The bridge to be designed is included in type k, so :

- The spacing between girders (Sg) should not be less than 1100 mm and should not be more than 4900 mm (1100 mm ≤ Sg ≤ 4900 mm), then in this case, The spacing between girders used is 2000 mm
- The thickness of the floor slab (ts) used must not be less than 110 mm and must not be more than 300 mm (110 mm \leq Sg \leq 300 mm), then the thickness of the floor slab used is 250 mm

The length of the cantilever plate on the outer side of the exterior girder (de) is determined based on Table 3.6.2.2.2d-1 i.e. $-300 \le de \le 1700$, then the length of the cantilever plate used is 1000 mm. So, from the above requirements, the initial dimensions of the girder and the dimensions of the bridge cross-section are determined as follows:

- Type of PCI-Girder Used PCI-Girder 2100 mm
- Spacing between girders $S_g = 2000 \text{ mm}$
- Length of Cantilever Plate De = 1000 mm
- Thickness of the floor slab $t_s = 250 \text{ mm}$
- Number of Girder used $n_g = 5$
- Width of Highway
- Thickness of diaphragm $t_d = 200 \text{ mm}$

Detailed drawings of the Bridge cross-section and girder dimensions are shown in the following figure:

Figure 4.2 Bridge Cross Section

4.2.2. Structural Analysis of Superstructure Using Midas Civil 2022

The stages that can be carried out in the analysis of the Superstructure using Midas Civil 2022 include the following.

1. Open Midas Civil 2023 which has been installed on your PC so that the initial display appears as shown below, then select New Project to create a new worksheet.

Figure 4.4 Initial view Midas Civil 2022

 Define the material to be used in the modeling of prestressed concrete bridges that have been mentioned in the previous superstructure data, for example, fc'50 and fc'30 concrete, by selecting Properties > Material > Material Structure from the Main Menu As shown in the picture below.

The compressive strength of concrete will increase as the age of the concrete increases since the concrete is poured, therefore we need to define it in all concrete materials that are previously defined following ACI 209R-92 by selecting Properties > Time Dependent > Comp. Strange from the Main Menu Then input the following data:
 Compressive strength factor of concrete a = 4

b =
$$0.85$$

Figure 4.6 Time-Dependent Material (Comp. Strength)

4. Because concrete over time will expand and shrink, therefore we need to define the Creep and Shrinkage of concrete in Midas Civil 2022 according to the ACI-209.2R-08 Guideline adjusted according to RSNI T-12-2004 by selecting Properties > Time-Dependent Material > Creep/Shrinkage from the Main Menu and filling in the data in the Creep/Shrinkage Time-Dependent Material (Creep/Shrinkage) dialog box with the following data.

•	Relative humidity of ambient environment	Н	=	70	%
•	Volume surface ratio	d	=	150	mm
•	Slumb	S	-	75	mm
•	Fine aggregate percentage	F	=	50	%
•	Air content	AC	6 5)	6	%
•	Cement content	C	-	409	Kg/m ³

View Structure Node/Exercised Properties	Civil 2022 - (C.\bers/Addwi)/De Boundary Load Acabysis Results PC Puchs Load Acabysis Results PC Puchs Load Acabysis Results PC Puchs Load Acabysis Results For Scief Scient Chap, Resultant For the Scief Scient	or Thickness Thickness Thickness	gas Akhirkdata Midas/Tugas Akhir Analisis Struktur *) - (MIC Durry Tools Ind. Control Data * "indestic Mange * Group Durry * Property Ec Properties Durry Tober *	AS,/CWI]	— ₽ X X Hep ~ . • •
Image of the second sec	Time Dependent Metrial (Dregs/Sinisage) Name Cde Type (20) ACI Type	Add Modify Delete Copy	Add/Modify Time Dependent Material (Creep / Shrinkage Name : Er20 Code ACI Compressive strength of concrets at the age of 28 days : Relative Namiday of ambient environment (40 - 99) : Valume entities at the begrowing of shrinkage : Jac Concrets at the begrowing of shrinkage : Jac Concrets at the begrowing of shrinkage : Jac Concrets Compression Strength Peter (r, k)) ACL 50 N/mm*2 70 2 % % 150 mm 7 2 3 day O staam cure	
Show Time Dependent Material Function Crap Function Data Type 	Criph Option: Transition grade of the set o		e: 4 (0.65-9-23) b: 0. Material factorial ultimate value Tipe 0.42.0x8 (0.65,000) Time garegales percentage : Act content : (0.65,000) Starter : Exercet content : (0.65,000)	5 (0.67–0.90) 0 Gar 75 mm 50 (2) % 6 (2) % 6 (2) % 6 (2) % 6 (2) % 6 (2) % 6 (2) % 7 (2) % 8 (2) %	joen Projektin.
Redrev For Help, great F1	ure 4.7 Time-Dep	endent M	aterial (Creep/Sh	vrinkage)	ee Menu 2 Task Pane 🔄 🕄 🕨 nor 🗸 🕄 🗐 🛛 🖓 🔽 🕞

 Then connect the predefined Materials with Comp, Strength, and Creep/Shrinkage data by selecting Properties > Time-Dependent Material > Material link from the Main Menu, as in the picture below.

	Civil 2022 - [C-\Users\Afdhi\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Tugas Akhir Analisis Struktur *] - [MIDAS/Civil]	- # X
View Structure Node/Element Propert	es Boundary Load Analysis Results PSC Pushover Design Rating Query Tools	∰ Help ' - ♥ ¥
User Define Change Property	🕜 🔳 🔢 🛷 🖤 🗉 🛶 🕼 Hindu Control Data *	
Material Properties	Plastic Section Section Plate Stiffness Tapered Section for Thickness Moment Curvature Properties Manager & Scale Factor Group Resultant Forces Curvature Curvature Platesic Material * Damping * Tables *	
Material Time Dependent Material	Plastic Section Inelastic Properties Damping Tables	
└━ヽ→·│ 🖺 🐩 🖫 🗷 🛞 🗩 🖽 🗣	Sector S	
Tree Menu # >	Hit Base I Hit	Task Pane + ×
	1	
Time Dependent Material Type		Tugas Akhir Analisis Struktur
Creep/similage 10.50 0		TA Coba 2
Comp. strength 10.50 0		TA Coba 1
Select Material to Assign		TA 2
Materials Selected Materials		TA TES
1:Fc50		New Participa
2:Fc30 3:A416-250(Norm		Open Projects
>		
4		User Defined Page *
		•
Operation		
Add / Modify Delete		A.
	Sec. 19	•
No Mat Creep Comp 1 Fc50 fc'50 fc'50		
2 Fc30 fc'30 fc'30		
Close		
	4 Start Page, MIDAS/Civil	>
	Message Window	# ×
	N	
	22 I () D D Command Message / Antyris litesage /	Tree Menu 2 Task Pane
For Help, press F1	literat literat	N v mm v V 12 10 2 2 0

Figure 4.8 Time-Dependent Material (Material Link)

6. After the material is defined, the next step is to define the Section Properties by selecting Properties > Section > Section Properties from the Main Menu As shown in the figure below, then define the cross-section of the PCI-Girder, Diaphragm, and Bridge Floor Slab that has been obtained through the previous preliminary design.

C C C C C C C C C C C C C C C C C C C	2 - [C\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Tugas Akhir An	alisis Struktur *] - [MIDAS/Civil] 😐 🥔 🕱
View Structure Node/Element Properties Boundary Load Analysis R	esults PSC Pushover Design Rating Query Tools	₿ _{Нер} • ×
Comp. Strangth Comp. St	Construction Section for Thickness Monent Mon	Contract of the second se
	econi ineasou Properties Damping i	
Properties X	DB/User Composite	842 . BB2
Material Sector (Tochess)	Section (2) 1 Name Models Section (C) Golder Section (C)	Select Material for Sale and Grid. X Corose Material for Sale and Gri
	Image: Second	Non Control Material for Gran D0 JB-Col(RC) Col Cold Cold Cold Manual Fold Cold Cold
 ح) 2. Start Pagit, 2. MiDe Mossage Window 	Mutge Modular of Eastory Edition (Craw) 0 Offset : Center-Top Editory (Shrnkape) 0 Change Offset Consider Shee Deformation. 0	> • ×
>>	Show Calculation Results OK Cancel Apply	Ten Men 2 To bu
For Help, press F3	igure 4.9 Section Properti	
		100 million (100 m

7. Before starting modeling and loading the structure, we must first choose the type of structure that is the bridge by selecting Structure > Type> Structure Type from the Main Menu. In the Structure Type, select 3-D and then Check Convert Self-Weight into Masses, select Convert to X, Y, Z, and leave the other settings as the initial settings as shown in the figure below.

	ci	ivil 2022 - [C\Users\Afdhil\D	Documents\Dokumen Kuliah\Tugas Akhir\data M	idas\Tugas Akhir Struktus Atas *] -	(MIDAS/Civil)	
View Structure Node/Element Properties	s Boundary Load Analysis	Results PSC Pusho	over Design Rating Query Tools			🗱 Heb 🐂 🧉 🕫
Ministry Ministry IF UM Bridge IF IS Structure Ministry IF CM Bridge IF CM Bridge IF CM Bridge Structure Cable Stayed Bridge IF CM Bridge	M Bridge Well RC Slab Bridge ansverse Model ITT RC Frame/Box Hilage Model Witzer Witzer	Steel Composite Bridge	ed broge - Steel Ginder Endge - Rai Track Steel Ginder Endge - Analysis Model*	CCS CCS	Check/Duplicate Berner	115
Tex bine	Rever	Structure Type Structure Type Structure Type Org Dive Twee Mess Control Farmsher Constant Official Constant Official Con	C V+2 Here N+Y Here C Inspiral Masses Satishan Right Body Mice for Model Participation Factor Wo Masses (2. Convert to X, Y Convert to X, Y	x Constraint R2 wit to 2 Cancel		Inn 2 Provide Group Report Constraints of Constrain
For Help, press F1			Nonel U: 0.			N ∨ mm ∨ 9 H2 F no ∨ 2 1 0 / 2 Φ

Figure 4.10 Structure Type

 Next, Model and load the bridge with the Wizard feature that has been provided by Midas Civil 2022 which is useful for modeling bridges by selecting Structur e> Wizard
 > Prestresses Composite Bridge from the Main Menu as in the figure below.

Image: Structure Node/Enternet Properties Ver Structure Node/Enternet Properties Mappendon Bridge FT CM Bridge FT SS Bridge To Midge Structure A Cable Stayed Bridge FM SS Bridge To Midge To Midge	Citril 20) s Boundary Load Analysis R SM Bridge New RC Slab Bridge Ransverse Model (]] RC Frame, Rox Rillage Model Witzard	222 - [C.\Liers\Afdhil\Document\Dokumen Kullah\Tugas Rearts PSC Pustover Desgn Rating Query Composite Program Step Composite Bridge + Step Criefs Bridge + Step Criefs Bridge + Step Criefs Bridge + An	Abhirvlata Midas/Tugas Akhir Analisis Struktur) Toois Sali Track Jysis Model V G - Grage UCS - Grage UCS Stan	[MIDAS/CIVI] Check/Duplicate Elements Display Free Edge/Face * * Check Element Local Asis Check Structure	-⊐ 98 22 34€ Hep - – ⊄ 9
The More Coup Report The More Coup Report	G Sur Page G MODASC				Usic Plane 9 Image Paylow 9 Topen Paylow 9 Tage Paylow 9 Open Physics 9 User Defined Page 9 Topot User Defined Page 9 Tage 1
fer Hele, prose f)	Figure 4	is completed. annum / 4.111 Prestresses	Composite Bri	•• ▲• ₩~ = dge	Ten Manu2 task Row ≥ 00-0010 ray - (1 10.07 ≥ 00

9. After the Pre/Post-Tension Composite Girder Bridge Wizard dialog box appears, on the layout page fill in the bridge data such as bridge length, bridge pedestal, and others according to the data we obtained earlier as in the figure below.

	Civil 2022 - [C\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Tugas Akhir FINAL *] - [MIDAS/Civil]		. # X
View Structure Node/Element Properties Boundary	Load Analysis Results PSC Pushover Design Rating Query Tools		\$∲ ныр ′ – € ×
🔝 📓 Base Structures * 🕨 ILM Bridge * 🐂 FSM Bridge	Pre/Post-Tensioned Composite Girder Bridge Wizard	× icate Elements	
Structure Suspension Bridge Transverse Model	L8yout Section Tendon Load Construction Stage	e Edge/Face *	
Type 🔹 Cable Stayed Bridge 🔤 MSS Bridge 🐨 Grillage Model		ent Local Axis	
Туре	Spant Span n	tructure	
i 🛶 - → - i 🔮 🎉 🟋 🖼 🗷 🛞 🔟 🛃 🔍 🗞 🔪	Britman Line		
Tree Menu 🛛 🗘 📩 Base	Collect the Skow Collect H Pt Ph Proved	St P	Menu 2 🕈 🛪 🔽
Tables Works Group Report	Centrold el deck	Table 1	es Works Group Report
⇒ Papes ⇒ Pastucture Tables		2 3	Stucture Tables
P Result Tables Vi Design Tables			Result Tables
Carey Tables		ΰđ	Query Tables
	Grider Type Precast Grider Type V Modeling Type All Frame V		04
	Spen Information 40 m Deck Width 10 m		ð
	Layout Offset		4
	Support seew Ange		
	Consistent of the Constant of		
	Carlor Simmer State State of Carlos State		
	Roundary/Substructure		
	Without Substructure OWth Substructure Guide		
	Supports O Elastic Link		a.
	Elastic Link Stiffness (Kx : Veritca), Ky : Transverse, Kz : Longitudinal)		2
	Abutment Kr. 729695 inflym Kr. 1459.39 inflym Kr. 1459.39 inflym		
	Pier Ka 1459599706 Stym Kg 2516.76 Stym Kg 2516.76 Stym		4
	Advended Elastic Link Length 0.3040 m		
	Eved Support Alument 1		
4 🚨	5	Þ	
Message Win		₹ ×	
	Open Save As OK Cancel		
>>			
<u> </u>	Command Message / Analysis litessage /	Tree	Meru 2 Isk Pare

Figure 4.12 Prestresses Composite Bridge (Layout)

10. Next, for the Section page in the Pre/Post-Tension Composite Girder Bridge Wizard dialog box, fill in the next data such as deck thickness, the material used for each cross-section, diaphragm data, number of girders and spacing between girders used according to the data that has been obtained previously as in the figure below.

Image: Structure Node/Element Properties Description Image: Structure Node/Element Properties Description Structure Image: Structure Image: Structure Image: Structure Image: Structure	Civil 2022 - (CsUteres)Atthild/Documents/Dokument Kulah/ lugas Athir/stata Midas/ lugas Achir (RAL *) - (MIDAS/Civil) Loss Analys Routs ESC Publices Dorign Ruling Query Yorks Per-Rothildeniand Comparte Gridge Maard	ess 🗰 🕱 Xi Help * * Kale Breents s Gos/Asc *
And and Super Super Super Minute Super SuperSuper Super Super Super Super	Name E.73 n Name Generation of Generation Name Deal Takines E.73 n Name Generation Name Generation Generation Name Generation Generation	etc.toor.Alss >>ore Tes Manu 2 * X Tes Manu 2 * X
	Dispirage Name Name Dispirage Name Dispirage Name Name Name Dispirage Name Name Name Par Disport Since Depirage Name Par Disport Since Depirage Name Coder bits nation Since Depirage Since Depirage	
	No. of Deletions 3 Apply Gutes Define Cold viscols No. Edge Section PC: 0 0 2 2 Mod Section PC: 0 2 2 Mod Section PC: 0 2 3 2 Edge Section PC: 0 38 40	
Re Mels Gress 11	com. Sour Ac. DE Decel meneret Henrier / Constant Henrier / Colors of e 4.13 Prestresses Composite Bridge (Sector)	ter Men 2 ™ Pere N > n > Core > (N 115/7218 tion)

11. For the tendon page is skipped first because the number of tendons used is calculated after the structural analysis is generated and followed by the load page, fill in all the loads that may act on the bridge such as dead loads, live loads and traffic loads according to the guidelines used as shown in the figure below.

C .					Civil 2022 - [C\Us	ers\Afdhil\Do	cuments\D	okumen Kulia	ih\Tugas	as Akhii\data Midas\Tugas Akhir FINAL *] - [MIDAS/Civil]	- # X
	Pre/Post-Tensioned Composite	Girder Bridge Wizard	undany Load	Analysis	Kesults Psc	Pushover	Design	Kabing	tuery X	Defen Teffe Lane	AF Help
Structure	Layout Section Tendon Load	Construction Stage								Traffic Lanes	
Туре	Pevement and Barrier								-	Pn	
Tree Menu Tables Wo	b1	b2 →P1 →P2	ck width	b4							* × 0
 ○ FR Structure Nov Ele ○ Proper ○ X Mat 	b1 1.5 m	b2 3.5	m 63	••	n <u>64</u> 3.5	M <u>2.5 m 15 1.5 m</u>			_	No. of Lones No. of Lones Ho Datasec(in) D1 3.25 0.2 0.75	ම් (1) දී එ
	C(Before Composit	e)	🗹 DC(After Co	mposite)		DW(After Com	nposite)				
		_	DC			DW					
o 🗖 Tim		Self Weight								OX	Cancel
e "n Tim	Before Composite	Weight Density Thickness	23.5	kti/m^3							
		Form Work	0	40/11/2							Å
Î		Rarrier	16.68	k10/m	Wearing St	rface					Că.
	Alter	Median Strip Additional Load	2.6269	di/m di/m	Weight Den Thickness	sty 2:	2 k	N/m≏3 1			
	Composite	Positions (P1)	0	m	Utilities	0	k	Vm			
State L					Positions (P	2) 0	n				
o I Sta m ⊕ I Sta	Uve Loads	Define Moving Load C	250	Defin	e Traffic Lanes		Define Veh	icles		0 x	
⊕ 🗊 Sta	Open Sa	ve As	F H Comma	nd Message 🛴	Analysis Nessage 🖌	0	к 🗍	Cance		Tree Menu 2	ask Pane
For Help, pre	B Djen Se	ve As	→ H Comma	nd Message 🛴	Azalysa Nessage 🖉	0	ĸ	Cance	ode-1	Tree Menu 2 U2.0.5.0 G2.0.5.0 MN ≥ m ≥ 1521 H2	ask Pane

Figure 4.14 Prestresses Composite Bridge (Load and Define Traffic Lines)

) E 🖯 🗘 🗉		(ivil 2022 - (C\U	Jsers\Afdhil\Documents	\Dokumen K	uliah\Tugas Akhir\d	ata Midas\	Bismillah Tugas akhi	r Struktur Atas + Te	endon FIX] -	(MIDAS/	Civil)	_		- # X
View Pre	e/Post-Tensioned Compos	te Girder Bridge Wizard						× 🔤	Vehicles					×]	10 H	Help × = ⊮ ×
44 1	Layout Section Tendon L0	M Construction Stage							Vehicle Name	Туре		Add Sta	ndard			
Structure	Pavement and Barrier							ira M	Line Load (TD) Truck Load (TT)	User Defined		Add User	Defined			
Туре	· ·	Deck	width					- 10				Mod	fy	5		
	b1	62	b3	Ь4	-b5							Dele	te			
Tree Menu	<u> </u>		<u>Λ</u>											Tree Me	enu 2	🤊 × 👸
Tables Work		+P1 +P2										Clas	ie .	Tables	Works Group Repo	nt 🖸
B Stucture													_		Stucture Tables	۲
Design T	b1 1.5	n b2 3.5	m b2	0 m	b4 3.5	m b5	1.5 m		Define User Defined	Vehicular Load				>	ign Tables	<u> </u>
B La Gaery Ta								- 11	Load Type						ry lables	
	Dead Loads Equally to All Girder								Truck/Lane Orego//Decesit	i ent						Q#
	DC(Before Compo	mposito)	DW(After Composite)				Train Load							0		
							754								·	
									Vehicular Load Prop	erties						
		Wet Con's							Vehicular Load Na	me :	Line Load	(TD)				
	Before	Weight Density	Weight Density 23.5 kti/m^3													
	Composite	Thickness	0.2	m					Truck Load	ů <u>ů</u> µ	₩ ↓	ⁿ				
		Form Work	0	10/1012						Da Da	Mn Do t ~	Mag Dn				
		S.I.P forms									FLH.	Bay.				2
		Barrier	16.68	ktę/m	Wearing Surface				Lane Load			نبعد				
	AB co	Hedian Strip	2.6269	ide/re	Weight Density	22	kN/m^3									Le .
	Composite	Additional Lead	0	$dd^{2}d^{2}$	Thickness	0.05	m		Truck Load			Lane L	oad			
		Positions (71)	0	m	Utilities	0	kN/m		P#	Df						
					Positions (P2)	0	11			Annalastas	Add	w	30.510	kai/m		
									No Load(KN)	Spacing(m)	Insert	PL	0	KN .		
	Uve Loads	Define Moving Load Cas	e	Define	Traffic Lanes	Dati	ne Vehicles	. 18			Modify	PLM	240.1	kn –	2 Tack Page	_
-	Open	ave As				OK	Cancel	- 1			Delete	PLV	0	kn	The Party	4 X
		CONSTRUCTION S	TEP NO.	: 2	/ 21 51	FAGE NO	: 1	STEP	Add Centrifuga	Force						
		al a la la Maria		-							ок	Cance	4	Apply		
For Help, press E1		H Command Me	ssage 👌 Analyr	sis Message /		-	Free	10.33	11:16:5:0	e.	650			kN ∽lm ∽	⊘ ≪ ▶ no ∨ 2	10/20
recorde press ri			N.L.	-		_	Trail	A 3	LAN							

Figure 4.15 Prestresses Composite Bridge (Load and Define Vehicles)

12. Then for the Construction Stage page, adjust the construction stages as shown in the figure below.

	Cinil 2022 - [C:\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Bismillah Tugas ak	nir Struktur Atas + Tendon FIX) - (MIDAS/Civil) 🚥 🗗 🕱
View Structure Node/Elem	ment Properties Boundary Load Analysis Results PSC Pushover Design Rating Query Tools	🗱 Heb 🐂 🗧
🗛 🔣 Base Structures * 🏴 IL	UM Bridge * Pre/Post-Tensioned Composite Girder Bridge Wizard	× ture Check/Duplicate Elements
Structure	FCM Bridge Layout Section Tendon Load Construction Stage	Display Free Edge/Face *
Type Star Cable Stayed bridge - M	Construction State Guide	ge Check Structure
	Girder Splice	
Tree Menu 🔍 🗶	Girder Splice Construction Temporary Support Position	Tree Menu 2 👎 🗙
Tables Works Group Report		Tables Works Group Report
Tables Stucture Tables	Post tensioning Tendons	Tables
Result Tables	Define Post Tendons	e 19 Result Tables
🖶 🔂 Query Tables	Stage Stage Description Load Condition Duration	in Ta Query Tables
	Substructure is Activated, Girder(Part) Self Weight Activated, Prestress load in 21 Deck is Activated as a Load Wet Concrete Load is Activated 21	
	2-2 Deck is in Composite Stage, span conti Wet Concrete Load is deactivated 3 After-Composite Load is Activated DC2 DWL pad is Activated 21	o
	4 Long Term Effect is Considered - 10000	
	Reinforcement	
	Define Reinforcement	
		b Tree Menu 2 Task Pane
	Massana	0 x
	CONST Oran Sum fa	Cerral

Figure 4.16 Prestresses Composite Bridge (Construction Stage)

13. Then the results of the bridge modeling will look like in the figure below.

14. Next, Define a Moving Load Case by selecting Load > Load Type > Moving Load Analysis Data > Moving Load Case from the Main Menu, then adjust the Moving Load Case as shown in the figure below.

Figure 4.18 Moving Load Case

15. Then make adjustments to the Static Load Cases from the results of the Prestresses Composite Bridge that have been made previously and also add Static Load Cases for the loads that will be added next such as Pedestrian Load and Wind Load on Structure by selecting Load > Load Type > Static Load > Create Load Cases > Static Load Cases from Main Menu as in the figure below.

	Civil 2022 - [C\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Tugas Akhir FINAL *] - [MIDAS/Civil]	
Vew Structure Node/Eiment Piccerics Rounda Bisitic Loads Opvarris Leads Settlement/Misc Temp/Prestress Oconstruction Stage OLead Tables Moving Load Meat of Hydration Load Tyre C	Loss Acaylance Picca Picca	W Hep • *
The Second Data The Second Data Image: Second Data Image: Second Data Image: Second Data	Start Lead Care All Lead Care New :: Left Lead Care New :: Lead Care New :: Left Lead Care New :: New :: N	no hono 2 0 X 100
Tor Help, press 19:	Figure 4 19 Static Load Cases	
	i igure 4.17 State Loud Cuses	

16. Add a pedestrian load of 5 kPa (SNI 1725:2016) by selecting Load > Load Type > Static Load > Structure Load / Masses > Nodal Loads from the Main Menu As shown in the figure below. Because the pedestrian load is the load area while the input is the nodal Load, then convert the pedestrian load as calculated below.

Pedestrian Load	W _{TP}	-	5.00	kN/m ²
Width of Sidewalk	b _{tr}	=	1.0	m
Distance Between Nodes	D _n	=	2.00	m
Point Load on the Central Node	P_{n1}	=	WTP x btr x Dn	
		=	10.00	kN
Point Load on the Edge Node	Pn2A A	\overline{N}	0.5 x P _{n1}	
UKL OF		=	5	kN

17. Then add the wind load to the structure which is a uniform load on the outermost girder by selecting Load > Load Type > Static Load > Beam Element > Element from the Main Menu as shown in the figure below. The amount of wind load on the structure is entered based on the data below.

Upstream Surface Conditions	Open	Fiel	d	
Wind Friction Speed	V ₀	÷)	13.2	km/jam
Length of Friction Upstream of the Bridge	Z ₀		70	mm
Elevation of Structures Above Ground	Z	=	9000	mm
Wind Speed Design of 10000 mm above Ground	VB	=	90	km/jam
Wind Speed at an Elevation of 10000 mm above	V ₁₀	1	90	km/jam
Ground	An			
Base Wind Pressure	$\mathbf{P}_{\mathbf{B}}$	=	0.0024	MPa
Wind Speed Design	V_{DZ}	=	160.264	Km/jam
Wind Load on Structures	EW_L	=	P _B (V _{DZ} /	V _B) ²
		=	7.610	kN/m

18. As a static analysis control on a structure, define the Eigenvalue by selecting Analysis
 > Analysis Control > Eigenvalue from the Main Menu as shown in the figure below.

Man Centrol Data Man Centrol Data Man Centrol Code Man Ce	Perform East Anal Stage Bridge Assignment Tendon Losses Import An Analysis Import An	ysis alysis Result Perform	
Not for the second seco	Permit Analysis Cathol Permit Analysis Permit Analysis Permit Analysis Permit Analysis Permit Analysis Permit Analysis Per		New Yorking Over Sector Yeard Concert Sector Yeard Concert Sector Yeard Sector Yeard

Figure 4.22 Eigenvalue

19. Add the earthquake load Response Spectrum, from which the earthquake data is taken from Aplikasi Lini, by selecting Load > Load Type > Dynamic Load > Respon Spectrum > RS Load from the Main Menu as shown in the figure below.

20. Followed by creating the Load Case Response Spectrum by selecting Load > Load Type > Dynamic Load > Response Spectrum > RS Load Cases from the Main Menu as shown in the figure below.

21. Then make a load combination according to SNI 1725:2016 by selecting Result > Combination > Load Combination from the Main Menu. In this Load Combination, we can create a Load Combination automatically with Auto Generation following the guidelines provided by Midas Civil 2022 such as AASHTO-LRFD17 and adjusted again with SNI 1725:2016 as shown in the figure below

) (d) =			Civil 2022 - [0	C\Users\Afdhil\Documents\Dokumen Kuliah\Tu	igas Akhir\data Midas\Tugas	Akhir FINAL] - [MIDAS/Civil]				- P
View Structure	Node/Element Pro	perties Bound	ary Load	Analysis Results P	SC Pushover Design Rating Query	Tools			_		🗱 Нер 🔧 —
	d Combinations					- 0	Automatic Generation of Load Co	mbinations		×	
H C							Option				
Load Ge	eneral Steel Design Concret	te Design SRC Desi	gn Composte St	sel Girder Design			Add O Replace				
mhianting	Load Combination List				Load Cases and Factors		Code Selection				
	No Name	Active	Type	Description	LoadCase	Factor	Steel O Concrete O 58	c O Sta	el Composib		-
- 🛶 - j 💾 🍕	1 Kuat L1	Strength/Str	Add		Self Weight (MS)(ST)	1 2000	Design Cade : AASHT	0-LRFD17			
enu .	2 Kuat I-2	Strength/Str	Add		Barrier And Sidewalk (MA)(ST)	2 0000					4
Works Grou	3 Kuat II-2	Strength/Str	Add		Wearing Surface (MA)(ST)	1 3000	Manipulation of Construction Stage L	oad Case			
Nodes : 231	4 Kuat II-1	Strength/Str	Add		Pedestrian Load (TP)(ST)	1,8000	ST Only CS Only	0	ST+CS		
Elements : 37	5 Kuat III-1	Strength/Str	Add		Beban Truck (TT)(MV)	1 8000	ST : Static Load Case CS : C	enstruction S	tage		
- > Beam: 37	6 Kuat III.2	Strength/Str	Add		*	1.0000	Land Maddler .	1			Stangel set1
Material: 4	7 Kuat IV	Strength/Str	Add				Loss souther :			-	owye cast]
- 1 : Fc50	8 Kuat V-1	Strength/Str	Add				Load Factors for Permanent Load	a (Yp)			
1 3 4416-25	9 Kuat V-2	Strength/Str	Add				Type of Load	Lo	ad Factor		
4 Dummy	10 Ekstrom II-1	Strongth/Str	Add					Max	Min	Eoth	
Time Depend	11 Ekstrem II-2	Strength/Str	Add				Component and Attachments	01.25	0.90	0	
[] 10'50 [Cod	12 Ekstrim L1	Strength/Str	Add				Downstrag				
Time Depend	13 Ekstrom L2	Strength/Str	Add				O Piles, alpha Tominson Method	0 1.40	0.25		
Cod (Cod	14 Ekstrom I-2	Strength/Str	Add				Ples, gamma Method	O 1.05	0.30		
□ € 30 [Cod	16 Ekstrim I.4	Ctrongth/Ctr	Add				Drilled shafts, O'Nell and Reese	01.25	00.35		S)
m 1 Mat-Fo	16 Lavan 14	Soniconhilit	Add				(2010) Method				
m 2 Mat-Fc	17 Layan 1-1	Serviceabilit	Add				Wearing Surfaces and Utilities	01.50	0.65	0	mp. Strength)
Section: 6	19 Lavan 1.2	Serviceabilit	Add				Horizontal Earth Pressure				
I 2 Edge S	10 Layan I-4	Canicashilit	Add				 Active 	O 1.50	0.90		
3 : End Dig	19 Layan P4	Serviceabilit	Aud				At-Rest	01.35	0.90		E=1c'50]
I 4:Middle	20 Layan II-1	Serviceabilit	Add				ARP for anchorod walls				E-fc'30]
T 5: Girden/	T 211Lavan II-2	Serviceabilit	IA00	_			Vertical Earth Pressure				
Composite Se							Overall Stability				2F
😭 1:1 Mid Se							Retaining Walls, Abutments	01.35	01.00		
10/ 22Edge a	Copy Imp	ort	Auto Generation	Spread Sheet	t Form		Rigid Burled Structure	0 1.30	0.90		
atic Loads							O Rigid Frames	01.35	0.0.90		
State Load C. P6	e Name: C:\Users\Afdhil	\Documents\Dokum	en Kullah\Tugas Ai	hirl,detz Browse	Make Load Combination Sheet	Qose	Flexible Duried Structures				action Stage : 2
State Load Core 21	Wol Concerts (MA) - Robos R	Zest					Metal Box Culvers and Structural	0 1.50	0.90		[Stage+Stage1; or [Stage+Stage1]
Element Beam L	oads: 100	~~					Carrier wer beep Carrisganas				er Londe-onder
Static Load Case 3	Barrier And Sidewalk (MA) : E	Bet					 Thermoplastic culverts 	0 1.30	0.90		
Nodal Loads : 42	Manada - Carlos - Atta - Data		Care Dave		Nedellands C. Base Land		All others	O 1.95	0.90		
- Clement Beam L	oads : 90		a start rage				Earth Surcharge	0 1.50	0.75		nt (MS); Berat Sen
Static Load Case 5	Prestiess (PS). Beban Baja	Pft Message V					A				
Static Load Case 6	Pedestrian Load (TP) : Beba	nF									stete (MA) : Beban 6
Static Load Case 71	: Wind Load On Structur (FWL)	et >>					Bacandary force Rom post-tensionin		1		
,		REF	H Command Me	sage A Analysis Message	1	-	Force effects due to creep, shrinkag	1	0		
						16 1140-2.0					1 2 1 2 1

Figure 4.26 Load Combination

22. Finally, analyze the bridge structure that has been modeled earlier by selecting Analysis > Perform > Perform Analysis from the Main Menu or you can press the F5
key, then all the results of the analysis can be seen in the Result menu as shown in the figure below.

Figure 4.27 Perform Analysis

4.2.3. Approximating Prestressing Force and Determination of The Number of Tendon

The number of prestressed strands required is usually determined based on the tensile stress on the bottom fiber (f_{bserv}) of the girder due to the combination of Service III loading, where the amount of tensile stress on the bottom fiber due to the combination of Layan III load based on the analysis using Midas Civil 2022 is:

 $f_{bserv} = 20.807 \text{ MPa}$

The limitation of concrete tensile stress immediately after the transfer of prestressed force that occurs during the service load (f_{alserv}) based on SNI 2847-2019 is:

falserv = $0.5 \sqrt{\text{fc' MPa}} = 3.536 \text{ MPa}$

Thus, the required strand prestressed stress (fpb) at the bottom of the girder is:

 $fpb = f_{bserv} - f_{alserv} = 17.271 MPa$

The location of the center of the prestressed force is assumed to be about 5-15 percent of the height of the girder measured from the bottom side of the girder. And in this case, it was chosen by 10 percent.

Distance from the Neutral Axis to the Bottom Fiber	\mathbf{y}_{b}	=	1034.038 mm		
Distance From The Center of the Prestress to The Bottom Fiber	$\mathbf{y}_{\mathtt{bs}}$	=	0.1 hg	=	210.000 mm
Eccentricity at The Mid-Span	ec	=	V _b - Vb _s	=	824.038 mm

The stress at the base of the girder due to the effective prestress force, Pe, can be determined by the following equation:

$$Pe = \frac{f_{pb} A_g S_b}{S_b + e_c A_g} = 5503.332 \text{ kN}$$

To calculate the final prestress force on each strand, estimating the prestress losses that occur in the strand is necessary. It is assumed that the prestress losses are 20% and the initial prestress tension is 0.75fpu so the effective prestress is 55%. Then the final prestress force per strand (Pe_strand) can be determined based on the following equation:

 $P_{e_strand} = A_{strand}$. f_{pbt} . (1 - losses) = 110.160 kN

Based on the calculation above, the number of strands required (Nstr_req) to bear the load acting on the prestressed concrete is:

$$N_{str_req} = \frac{p_e}{p_{e_strand}} = 50 \text{ strand}$$

Nstr = 57 strand

N = 3 Tendon
$$KEDJAJAAN$$

It should be noted that the determination of the initial number of strands can differ from the number of final strands used. For example, in this example, the number of strands required is 50, but in the final condition, 57 strands are used. This is because the initial strand in this example is determined based on the conditions in the middle of the span. However, in segmental prestressed girder bridges, planning is often determined by conditions at the point where there should be no tensile stress at the girder joint so that the number of final strands is more than the initial estimate.

$$A_{ps} = N_{str}$$
. $A_{strand} = 5922.600 \text{ mm}^2$

4.2.4. Position of Tendon

4.2.5. Prestressed Concrete Design Check Using Midas Civil 2022

Design check on prestressed concrete has some very important uses such as guaranteeing structural safety by ensuring that the concrete elements can withstand the planned load without experiencing failures such as cracking or collapsing. In addition, design checks also ensure optimal performance, so that the structure functions according to its intended purpose, including rigidity and stability over its lifetime. The design inspections that Midas Civil can accommodate are the inspection of prestressed force loss, the inspection of the allowable stress on concrete, and the inspection of bending and shear capacity.

The stages that can be carried out in the check of prestressed concrete design at Midas Civil include the following.

 By continuing the modeling from the structural analysis that has been done previously, define the tendon data according to the data from the design calculations that have been done previously by selecting Load > Load Type > Temp./Prestress > Prestress Loads > Tendon Property from the Main Menu as shown in the figure below.

Static Loads Dynamic Loads Static Marriel Immup/Prestress Construction Stage Load Tables Monor Load Heat of Hydration Load Type Load Tables Immup/Prestress Construction Stage	State Load Uding Load Cases Combandions Temp: Claders Temp: Cruste Load Cases Temp: Claders Temp: Cruste Load Cases Temp: Claders Temp: Temp: Temp: Temp: Temp: Temp: Temp: Temp: Temp: Temp: Te	igitem Temp. Vodal Temp. Terdon Tendon Tendon Tendon Property Politice Tendon Politice Te		
Tardo Nogel Tardo Property Wide Tardo Property Wide Tardo Property Wide Tardo Property Transmission Tardo Property Tardo Property Tardo Property Tardo	AddAMAdify Tindon Pa adda adda Materia Deter De	T165 29:mm(//dot Traine) 3	X InclorArea X Seed Bonder : 112/mill 57 Hunder d Stando : H C OK Careat	
Compare 19 C	California California ana Without I The Common Working (respectively) Figure 4.	1666-155 (Le 2000 5500) 29 Tendon Property		≪ ⊁ _{P0 √} (2) 10// 2

2. Define the tendon profile along the span of the girder beam according to the previously calculated data by inputting the coordinates of the tendon at the end of the span and the middle of the span for all girder beams by selecting Load > Load Type > Temp./Prestress > Prestress Loads > Tendon Profile from the Main Menu as shown in the figure below.

0					
	c	vil 2022 - [C:\Users\Afdhil\Documents\	Dokumen Kuliah\Tugas Akhir\data Midas\Tug	as Akhir Struktus Atas Tendon *] - [MIDAS/Civil]	- P 12
View Structure Node/Element Properties	Boundary Lead Ana	ysis Results PSC Pushover	Design Rating Query Tools		🗱 Hep 1 – 47 X
Static Loads Dynamic Loads Static Loads Orestruction Stage Load Tables Moving Load Others of Hydration Load Table	Asc. LC Line Static Load Using Load Cases Combinations	Element Temp. Beam Section Temp.	stern Temp. odal Temp. Tendon Tendon Sendon Property Profile * Protections Concerning	estress Beam Loads etension Loads temai Type Loadcase	
	¥® <u>*</u>		> 😹 1 21 🖾 🖉 🖸 🖳 🔍 🖂	888 III 198 🖬 🗇	
Balance Control Balance Control Balance Version Control Balance Control Balance Version Control Balance Control Balance Version Structure Structure Structure Structure Structure	Image: State Figure Image: State Figure Image: State Figure Image: State Figure <td>Image: Control Inc. Life Property Control Inc. Life</td> <td>Type Tendon lumber Dente 1 Dente 1 Den</td> <td>Add generic born parts born paters</td> <td>Instance Instance Instance Instance<</td>	Image: Control Inc. Life Property Control Inc. Life	Type Tendon lumber Dente 1 Dente 1 Den	Add generic born parts born paters	Instance Instance Instance Instance<

Figure 4.30 Tendon Profile

Figure 4.32 Results from Tendon Profile (Side View)

3. Define the prestressed load to be applied to the tendon by selecting Load > Load Type > Temp./Prestress > Prestress Loads > Tendon Prestress from the Main Menu as shown in the figure below.

Figure 4.33 Tendon Prestressed

4. Add the force acting on the tendon in the Construction Stage in Stage 1 i.e. on the tendon force transfer by selecting Load > Load Type > Construction Stage > Construction Stage Data > Define C.S from the Main Menu as shown in the figure below.

	Civil 2022 - [C\Users\Afdhil\Docume	ents\Dokumen Kuliah\Tugas Akhir\da	ita Midas\Tugas Akhir Struktus A	tas Tendon *] - [MIDAS/Civil]	- # X
View Structure Node/Element Properties	Boundary Lead Analysis Results PSC Pushove	r Design Rating Query 1	'oo's		∰ _{Help} × = « ×
Static Loads Dynamic Loads Settlement/Mis Temp/Prestress Construction Stage Load Tables Moving Load Heat of Hydration	AL Define Composite CS Camber CS Section For CS Loads * For CS.				
	Compose Construction Stage			×	
	Stoge		Additional Steps		The track
irree Meru V A	Stage1	· •	Day: 0	Add Delete	
Works Group Report	Name : Stage1		(Example: 1, 3, 7, 14)	Mooly Clear	Type 1 (111000)
Friedra Stradysis Control Data Cipervalae Analysis [Type=Eigenvectors-Lanczo. Construction Stage Analysis [Stage=Last] Stoctors * Nodes : 231	Duration : 21 Save Result	day(s)	Auto Generation Step Number : 0	Step Day	Comparison of the set of th
B > Elements: 374 TO Preparentes	Count One Information		Generate Steps		Sett Weight [S2=1]
	Element Dourdary Load	hu.			Beinert Beam Loads : 100 Static Load Casa 3 [Barrier (MA) : Beban Berrier d (1) Nodal Loads : 42
3 A416 250(Normal) 4 Dammy Material Time Dependent Material(C&S)	Group List DCI-2 DC2-1	Activation Sint	Deactivation		Static Load Case 4 [Wearing Surface (MA); Bebar Bement Bearn Loads: 50 Static Load Case 5 [Prestress : Bebar dari gaya c
The Dependent Material Comp. Strength Time Dependent Material Comp. Strength	DWI Roban Tambahan	Group List	Group List	Pirst V day(s)	Control C
1 1500 [Content-Arc]] 1 1500 1500 1500 1 1 1500 1500 1500 1500 1 1 15000 15000 15000		Name Day DC1-1 First G1 Pirst G2 First G3 Pirst G5 Pirst	Herno	Day	Batic Lead Case 7 (Weid Lead Into Bhatware (WK) Batic Lead Case 7 (Weid Lead Into Bhatware (WK) Response Spectrum Analyse Response Spectrum
- I 6 GirderWizRectangle_6 ⇒ Boundaries		Add Modify	Delete Add N	lodify Delete	
	Laad Incremental Steps for Material Nonlinear Analysis	5	(- we G2-T1 [Property=T165, N=1; Group=Defaa - w4 G2-T1 [Property=T125; N=1; Group=Defaa - w4 G2-T2 [Property=T165; N=1; Group=Defaa - w6 G2-T3 [Property=T165; N=1; Group=Defaa
- ② Type 1 [Angle : about X-0 : about Y-0 : about Z) ↓ Static Loads ③ ③ Static Load Case 1 [Self Weight (MS) : Beban dari B	4		OK Can	cel Apply	 +e+ G2-T4 [Property=T165 : N=1 : Group-Defau. +e+ G3-T1 [Property=T125 : N=1 : Group=Defau. +e+ G3-T2 [Property=T165 : N=1 : Group=Defau.
-					G3-T3 [Property=T165, N=1; Group=Defau. - x-4 G3-T3 [Property=T165; N=1; Group=Defau. - x-4 G4-T1 [Property=T125; N=1; Group=Defau. - x-6 G4-T3 [Property=T125; N=1; Group=Defau.
- (+ Nodal Loads : 42	>>				Tree Marsu 2 Tark Rome
	al al al all'entremente y vastas nesses 1				

Figure 4.34 Construction Stage

5. For checking the flexure capacity and shear capacity of the cross-section, we must include longitudinal reinforcement and shear reinforcement which will be used by the trial and error method until the value of bending capacity and shear capacity follows the allowed value by selecting Properties > Section > Section Manager > Reinforcement from the Main Menu as shown in the figure below.

6. To approximate the stress loss in the tendon we must first define the control analysis by selecting Analysis > Analysis Control > Approximate Tendon Losses from the Main Menu as shown in the figure below.

Figure 4.36 Approximate Tendon Losses

 Add a force that works on the tendon in the Load Combination by selecting Result > Combination > Load Combination from the Main Menu as shown in the figure below.

	Civil 2022 - [C\Users\Afdhil\Documents\Dokumen Kulia	ah\Tugas Akhir\data Midas\Tugas Akhir Struktus Atas Tendon *] - [MIDAS/Civil]	- # X
Vol Success Vol S	Booten Booten<	op Query Total Last Case: and Factors	X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
E 1 4 dolt Gater E 1	Cury import. duis Generation. Street 84 File horne: Closen Weld Zouwenschlohumen fuller/Tiges Mitholde Brook C Store Flage, C MOAX/Conil C Tendor Prestness Lauds Verstage Street Res S = { A Command Message & Anges Street p / File numero A 37 1 0	Mais Las Controller Shet Geo	Point (2007) 20 Point (2007)

Figure 4.37 Load Combination

8. To see the force working on the structure after the Tendon is added, perform a Run Analysis Again by selecting Analysis > Perform > Perform Analysis from the Main Menu as shown in the figure below.

Figure 4.38 Perform Analysis

9. Furthermore, for checking prestressed concrete that has been designed beforehand, we must choose the guidelines we use and set the parameters first by selecting PSC > Design Parameter > Parameter from the Main Menu as shown in the figure below.

	Civil 2022 - [C:\Users\Afdhil\Documents\Dokume	n Kuliah\Tugas Akhir\data Midas\Tugas Akhir Struktus Atas + Tendon	*) - [MIDAS/Civil] 💼 🗃 🕱
Vew Structure Nodo/Element Properties Do AASHTO-LRFD17 PSC Design/Output Pesticion * Design/Output Pesticion * Interfait	te Aloveble Stress Load Case Res are an are as a stress load Case Res are as a	Rating Query Tools	¥≇ Hep ' - * *
Design Parameter PSC Design Da	PSC Design Parameters		<
·	R Design Code : AASHTO-LRF017 v		
Image: Section of the sectio	Perge Code : ALG/TO UF022 Perf. Promotions Perf. Perf. Promotions Perf. Perf. Perf. Perf. Perf. Perf. Perf. Per	Corrective Candidate Source Source Source Source Contraction Type Contention Type Support Non-Supportation All Pedared Gable Pedared Gable Source Source Content Source Source Content Source Content Source Content Content Source Content Co	Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action Image: Section Action <t< td=""></t<>
For Help. press F1		Node-88 U: 12. 5. 0 G: 12.	5,0 N ∨ m ∨ 오박 № nor ∨ 2 00 0 2 &
	Figure 4 39	Design Parameter	

10. Next, we need to define the material of the design that we calculated earlier, such as the quality of the concrete and the quality of the rebar steel used by selecting PSC > PSC Design Data > PSC Design Material from the Main Menu as shown in the figure below.

	Civil 2022 - {C:\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Tugas Akhir Struktus Atas Tendo	:n] - [MIDAS/Civil] 👘 🖉 🎉
Very Structure Nood-Kennert Properties Boundary GL AG5110-LB012 B PC Design Material Parameters B PC Design Material Parameters B PC Design National B PC Design Design Parameters PC Design Param	d Acujos Resta PSC Puchew Degn Rating Query Tods ves Load Care Modify Composite Concrete Materials Medify Composite Concrete Materials	¥≹ 1660 €
Inter Money Organization (Construction) Market Constructions Market Constructions Market Constructions Market Constructions Propertie	B Nmme Care(Colic Mathematic State Mathematic	Texture 2 Texture 2 Texture 2 Texture 2 Texture 2 Texture 2 Texture 4 Texture 4
R + F H Comm	and message / Analysis Message /	Iree Menu 2 Lisk Pane

Figure 4.40 PSC Design Material

Then, Select the position of the prestressed concrete you want to check and export the calculation by selecting PSC > PSC Design Data > Design/Output Position from the Main Menu as shown in the figure below.

12. Then select Load Combination of the serving load used for checking the allowable stress on concrete by selecting PSC > PSC Design Data > Concrate Allowable Stress

Figure 4.42 Concrate Allowable Stress Load Case

 To start the inspection on the prestressed concrete design, we perform the design by selecting PSC > PSC Design > Perform Design from the Main Menu as shown in the figure below.

14. See the results of the Check on the prestressed concrete that has been carried out by selecting PSC > PSC Design Result > Result from the Main Menu as shown in the figure below.

	Civil 2022 - [C\User	s\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Tugas Akhir	Struktus Atas Tendon) - [MIDAS/Civil]	
View Structure Node/Element Properties	Boundary Load Analysis Results	PSC Pushover Design Rating Query Tools		∰ Hep ' = € K
AASHTO-LRFD12 Parameters Parameters Proceedings Couput Position * Proceedings Couput Positi	Concrete Allowable Stress Load Case Arteria Concrete Allowable Stress Load Case Arteria Concrete Allowable Stress Concrete	Result Tables Creck stress for cross section at a construction stage Creck stress for cross section at a construction stage Creck tendia stress for Prosteesing tendons		
		Check stress for cross section at service loads	88	
Text Series (Control Report Control	Billing Billing Avandis Billing Billing Billing	es Deer Strength () Cesk aftes for coss section at serve as the Cost Desk and a second-cost of the Cost of the Cost Product of the Cost of the Cost of the Cost of the Cost Product of the Cost of the Cost of the Cost of the Cost () Cost Steer Strength () Cresk Steer	0.04 (sec) percent Completed) of 0.09 (sec) percent Completed)	Net Adout 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Crack Check	20 / 20 (100 1	0.18 [sec] percent Completed)	
>> ((E E Command Message / Analysis Message /	-		Tree Menu 2 Task Pane
For Help, press F1		Frame-95 U: 212. 0	G: 21, -2, 0	kN ∨ m ∨ 💁 🖾 🕨 noi ∨ 💲 🔜 1 © / 2 🖷

Figure 4.44 Result Table

	Civil 2022 - (C-USers'Afdhil)Documents'Dokumen Kuliah)Tugas Akhir/data Midas',Tugas Akhir Struktus Atas Tendon) - (Check stress for cross section at	service I) 👝 🛱 🔀
View Structure Node/Bement Pro	perties Boundary Load Analysis Results <mark>PSC</mark> Pushover Design Rating Query Tools	🗱 Help 🐂 🖉 🛪
AASHTO-LRFD12 * PSC Design Material	Se Concrete Allowable Stress Load Case 💭 🦳 🕞 Result Tables *	
Parameters Secon/Output Position	· Still Interface shear Strong Burger Forces	
Segment Assignment	Perform Excel	
Design Parameter	PSC Design Data PSC Design Results	
· ← · → · i 🕲 👍 i 🟋 🕞 🗶 🛞 i 🖉 🙏 i		
Tree Menu 🕴 🗙	Finn Det Girdar/Stah Comm/Tenr LCom Tune CHK FT FB FTL FBL FTR FBR FMAX ALW	Tree Menu 2 🛛 🗛 🧮
Tables Works Group Report	Ecrit Full Circle-Company Company 178 Work (Winn'2) (Winn	Tables Works Group Report
EP Works	Control C	🗇 Works
10 S Analysis Control Data	85 J281 Condect Competent Competence Lavan - MY-MIN OK 1416 4054 6388 1904 1436 6118 6325 8730 1396 1996 6290 5118 6325 8739 3000 0000	🔋 🔂 Analysis Control Data 🔍
 Eigenvalue Analysis [Type-Eigenvectors-Lanc; 	85.8281 Girdar/Composit Tension Layan I MY-489 OK 1482 2785 6328 1035 1496 5411 6331 8332 1398 0166 6324 3738 1398 0160 3527 7529	Eigenvalue Analysis Type-Eigenvectors Lanczo
- Construction Stage Analysis [Stage=Last]	86 I[28] Girder[Composit Compression Layan - MY-MIN OK 2237.2003 8934.1751 2271.3544 9024.0800 2233.0461 8964.2902 5024.0600 30000.0000	Gonstruction Stage Analysis [Stage=Last]
hadas 201	86 [28] Girder(Cempesit Tension Layan I MY-MIN OK 2224 5573 9016 9811 2229 0644 9020 9247 2220 0503 9013 0374 2220 0503 3527 7529	Madas 211
Elements 374	86 J[39] Girder[Composit Compression Layan - MY-MIN OK 3051.7138 7632.3835 3078.6561 7655.9580 3024.7716 7608.8090 7655.9588 30000.0000	z > Flemanta 374
Properties	86 J[39] Girder(Composit) Tension Layan II MY-MIII OK 3028.4697 7675.1074 3031.8234 7678.0419 3025.1160 7672.1729 3025.1160 -3527.7529	- II Properties
E X Material : 4	87 [[39] GirdarjCempesit Compression Layan I-[MY-MIN OK 3045.2520 7633.7813 3074.5129 7659.3846 2015.9910 7659.3846 30000.0008	🔒 🔲 Material: 4 🔿
Time Dependent Material(C&S)	87 ([39] Girder(Composit Tension Layan II MY-MIN OK 3022.8182 7677.0765 3025.6811 7679.5115 3020.1153 7674.6414 3020.1153 -3527.7529	🔅 🖬 Time Dependent Material(C&S) 🔐
0 Time Dependent Material(Comp. Strength)	87 J[50] Girder(Cempesit Compression Layari MY-MIN OK 3744.7482 6524.7210 3771.0402 6547.7264 3718.4562 6501.7155 6547.7264 30000.0000	🔅 🛅 Time Dependent Material(Comp. Strength) 💦
— * Time Dependent Material Link	87 J[50] Girder[Composit Tension Layan II F2AttN_OK_5453.6605_2897.9488_5455.1851_2899.2825_5452.1358_2896.6147_2896.6147_2827.7529	🛞 👘 Time Dependent Material Link
B I Section: 6	88 50] Girder(Campesit Compression Layan I- MY-4MI) OK 3744.9888 6523.9922 3759.1105 6544.1991 3720.8656 6501.9853 6544.1991 30000.0000	A Z Section:6
E doundaries	88 [50] Grider(Campest Tension Layan EMY-MA OK 5455.032 2096.16/6 5456.0716 2099.0535 5454.0468 2097.2318 2097.2318 -2577.7529	E Boundaries
U Supports: 10	85 Up1 Grow/Compression Layan - MY-IRA UK 6399 0964 1295 0/94 6372 1816 12/1.5297 6425 0093 1518 5290 6425 0093 30000 0000	supports : 10
El-or Node Local Add - To	88 J[b1] Carder/Cemposit Lenson Layan /2 /011 UK 6443.624 1228.1113 6443.4297 1223.9136 6443.9052 1224.509 1223.9136 -35277.7529	State Loads
State Load Case 1 (Set Weinht (MS) : Behan de	0 [01] Cititat Camplesi Complexity (Camplesion Leyan Fair Fair (CK 04/2, 50/6 (2/25/37/2) 04/32/2/56 (536.050/01/2) 1/2/1/57/37 (536.050/01/2) 1/2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	State Load Case 1 (Self Weight (MS): Rehan dari Re
Static Load Case 2 [Wet Concrete (MA) : Beban I	671(51) Circon/Compositi Centrolini Laguri M1*10/V OK 6441(551) 1226.5776 0441(5655) 1227,0545 6440(2502) 1225.5707	Static Load Case 2 [Wet Concrete (MA); Beban Pelat
① Static Load Case 3 (Barrier (MA); Beban Berrier	00 012 Construction parts of the pression (Legistre Part Haw Ock - Table State - 20 PPG - Table 7200 10 512 - 120 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 1200 0201 - 30 200 0200 0200 0200 0200 0200 0200	👔 🗊 Static Load Case 3 (Barrier (MA) ; Beban Berrier dan '
B Static Load Case 4 [Wearing Surface (MA); Beb:	90/0721 Generating Laware MY MA OK 7191 2007 34 1511 7296 1594 47 2428 7176 2490 21 0513 7206 1594 10000 0000	🔋 😨 Static Load Case 4 [Wearing Surface (MA) : Beban d: 🛄
🐵 🗊 Static Load Case 5 (Prestress : Beban dari gaya	90/0721 General Composit Tension Lavan I MY-MA OK 7216 4916 .22 0161 7216 1580 .22 3080 7216 8252 .21 7242 .22 3080 .527 7529	🔹 🗊 Static Load Case 5 (Prestress : Beban dari gaya prat 🔥
E State Load Case 6 (Pedastian Load (TP): Beba	90.3831 Girder(Competition Competition Lavan) MY 464 OK 7795.8992 -965.5957 7777.2840 -882.7327 7515.4543 -848.4587 7816.4543 30000.0000	🗟 🔃 Static Load Case 6 (Pedastrian Load (TP) : Beban Pe
State Load Case 7 [Wind Load on Stucture (EW)	90 J831 GirdariComposit Tension Lavan II F2 ANN OK 7819 7893 -916 0716 7816 9822 -916 7781 7820 5964 -917 3656 -918 7781 -3527 7529	State Load Case 7 [Wind Load on Structure (EWL): b
Methoda Depote 2	91 [I]33] Girder[Composit Compression Layan - MY-MA OK 7797.3356 -862.5578 7782.8090 -875.2586 7811.8522 -849.8470 7811.8522 30000.0000	- And Prestressing Lendon
mask Tender Profile : 20	91 [83] Girder/Composit Tension Layan I MY-MA OK 7814.3562 914.1586 7813.1875 915.1812 7815.5249 913.1366 915.1812 3527.7529	Texto Texton Property: 2
Besporse Spectrum Analysis	91 J[94] GirdarjComposit Compression Layan I-MY-MA OK 8234.0023 -1438.9212 8214.2163 -1456.2339 8253.7883 -1421.6084 8253.7883 30000.0000	- N Response Spectrum Analysis
B Response Spectrum Functions : 1	A b Chr Strees at earlies loads /	Response Spectrum Functions : 1
Response Spectrum Load Cases : 1		Response Spectrum Load Cases : 1
Moving Load Analysis Moving Load Code (AARHTO LEED)	4 J. Start Page J. MIDAS/Civil J. Check Shear Strength J. Check stress for cross section at service loads b	Moving Load Analysis Moving Load Analysis Moving Load Code (AASHTO (DED))
B Traffic Line Lanes : 2	Message Window 🦻 🛪	a I Trafic Line Lanes :2
vo Vehicles: 2	0.04 [sec]	3 S Vehicles : 2
Moving Load Cases : 2	Principal Stress by Service LCOM[Max Shear] 20 / 20 (100 percent Completed)	I Howing Load Cases : 2
- ster Construction Stage : 5	0.18 [aec]	 jap Construction Stage : 5
	Principal Stress by Service LCOM(Max Torsion) 20 / 20 (100 percent Completed)	
	Timespur berebb by bervice bonning relation and the bereat	
	Crack Check 20 / 20 (100 percent Completed)	
	>>	
	C Command Message & Anatols Message /	Tree Menu 2 Task Pane
For Help, press F1	Node-210 U: 36.5.0 G: 36.5.0	kN ~ m ~ 😌 🐮 🕨 ng ~ 👔 🛛 0 令 / 2 🌩
	TUNIV B	

Figure 4.45 Result Table of Checked Stress for Cross Section ar Service Load

15. Export design check results by selecting PSC > PSC Design > Export Report from the Main Menu as shown in the figure below.

			the second s		
	Civil 202	2 - [C\Users\Afdhil\Documents\Dokumen	Kuliah\Tugas Akhir\data Midas\Tuga	is Akhir Struktus Atas Tendon] - [MIDAS/Civil]	- 6P X
View Structure Node/Element Pro		Results PSC Pushover Design			
AASHTO-LBED12	Concrete Allowable Stress Load Case with the stress load Case the stress load Case So Concord Data	For Excel For Excel For Excel For Report For Report For Report For Result Tables * For Result Tables *			
	9. G. (R) 1 1	· 10 10 二 D 34 10			
Product Constraints Constraints Constraints Constraints	H Pauls II	PSC Report Myom NS Start Hyster, ory Start Hyster, ory Choles Hear Strength C Onest Shear Strength Service LCOM [Nax Shear] Service LCOM [Nax Shear]	The values of corput parameters will be a AGMTO 1470 US attacking varia. In this start space. User: SI OKCancel 20 / 20 (20 / 20 / 20 (20 / 20 (20 / 20 (20 / 20 / 20 (20 / 20 (20 / 20 / 20 / 20 (20 / 20 / 20 / 20 / 20 / 20 / 20 / 20 /	x 0.04 [sec] 100 percent Completed] 0.18 [sec] 100 percent Completed]	The Manual 0 0 State No Cacase Report Control Cacase Report Cacase Report
For Heirs press F1			Node-78 U: 12, 5, 0	G: 12, 5, 0	kN v m v 🕂 😢 🕨 no v 🔋 🔜 0 🗘 / 2 🗢

Figure 4.46 Excel Report

	Copy	÷	Arial	~ 10 ~ A* A	(*) = :	= = %	* 20 Wrap Te	ext	General	~	Condition			incort Doly		Fill ~	Z				
× <	Forma	t Painter	B I <u>U</u> ~ ⊟	3 × 🙆 × 🔺	~ =	= = =	🛅 🔛 Merge 8	k Center 👻	\$ ~ 9	6 🤊 號 📲	Formatting	 Table * 	Styles ~	v v	v	🞸 Clear	" Filter	r Y Select Y			
Cli	pboard	6	S Fort	t	5		Alignment		G N	umber 🖏		Styles		Cell	в		Editing				
T23			⊂ ∠ fr																		
A B Desi		E F	GHIJKL	MNOPQ	RS	TUVM	V X Y Z AA A	BACADA	E AF AG	AH AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	-
Desi	gircoi	Design C	ode Element	Section		Section															
	AAS	SHTO-LR	FD2012 85	1	0	omposite															
						- i - i - i - i - i - i - i - i - i - i															
	Sectio	on Prope	erties																		
	- Gross	s section			- Tran	sformed sec	tion														
			Before	After			Before	After													
	н	(mm)	2100.00	2350.00	н	(mm)	2100.00	23	50.00												
	В	(mm)	800.00	2000.00	В	(mm)	800.00	20	10.00												
	Cap	(mm)	1037.79	756.82	Cas	(mm)	1045.16	7	57. 0 6												
	Cam	(mm)	1062.21	1343.18	Can	(mm)	1054.84	13	32.94												
	Cape	(mm)		1006.82	Cap	(mm)		10	17.06												
	Came	(mm)		756.82	Cam	(mm)		7	57.06												
	A ₀	(mm²)	1.332.E+06	1.756.E+06	A ₀	(mm²)	1.361.E+06	1.785	E+06												
	Ļ	(mm*)	5.249.E+11	9.622.E+11	Ļ	(mm*)	5.314.E+11	9,765	E+11												
	St	(mm ^a)	5.058.E+08	6.936.E+08	S	(mm ^a)	5.084.E+08	6.928	E+08												
	S ₀	(mm ^s)	4.942.E+08	3.908.E+08	Sp	(mm ³)	5.038.E+08	3.987	E+08												
	S _b	(mm ³)		9.556.E+08	S ₈	(mm ³)		9.460	E+08												
	5 ₈	(mm*)		1.2/1.E+09	Dte	(mm ²)		1.254	E+09												
	Motor	iale																			
-	- Co	ocrete																			
			f	E.		f=0.2	10.P.														
			(MPa)	(MPa)		OME	Pa)	β,													
	Gird	er	50.000	(4796.2		3.713	(0.687												
	Sla	ь	30.000		4061.1		2.876	(0.832												
		β, : 0	0.85 if fc is lower than 4	ksi, the others are	0.85-0.05(f	'c-4.0)≥0.65															
	- Prestre	essing ste	el information																		
				d _p	A _p	Str	ength (MPa)	E _p													
		rincipalS	itressAtLCBMaxTorsi	on TendonS	tress 8	5] 85J	95_1 95_1	\oplus													
																	囲	(III) (III)	-		

Based on the Prestressed Concrete Check using Midas Civil that has been carried out in the middle of the span, the following results are obtained,

- 1. Final Effective Prestressed Force
 - Effective prestressed force fpe = 1061.564 kN
 - Tendon Stress Limit fpe_max = 0.8 fpy
 - Control $fpe \leq fpe_max$ (OK)

Because the fpe value is smaller than fpe_max, The steel tendon is safe against the stress that occurs

= 1339.20 kN

2. Stress Check

Allowable Stressed at Service Load

• Tensile $\sigma t = -0.5\sqrt{f cg}$ = -3.545 MPa • Compression $\sigma c = 0.6 f cg$ = 30000 MPa

Stressed of Beam Girder at Service Load

- Stressed at top fiber ft = -3124.294 MPa $\leq \sigma t$ (OK)
- Stressed at Bottom fiber fb = 8981.759 MPa $\leq \sigma c (OK)$

Because the Stressed of the Beam Girder at the Service Load value Qualify allowable stress at the service load, the beam Girder can withstand the Stressed occurred

3. Flexure Strength Check

Flexure Resistance

4.

•	Maximum factored moment	Mu	=	2000	kN
•	Nominal Flexure Resistance	Mr	=	1000	kN
•	Control		M	$r \ge Mu$ (OK	()

Because the Mr value is greater than Mu, the beam girder can withstand the applied load.

Minimum Reinforcement check	ASANDA	LAS	
• Maximum factored moment	Mu =	2000	kN
Cracking moment	Mcr =		kN
• Nominal Flexure Resistance	Mr =	1000	kN
• Control	$Mr \ge min$	n(1.33Mı	1, 1.2 Mcr) (OK)
Shear Strength Check Maximum factored Shear 	Vu =	2000	kN
• Nominal Shear Resistance	Vn =	1000	kN
• Control	Mı	$\sim \geq Mu$ (C	DK)
Because the Vn value is greater th	an VU, the	beam gir	der can withstand the applied
load.	AJAAN	BANC	ISA

4.2.6. Reinforcement Calculation of Bridge Superstructure Component

The superstructure components for which the reinforcement is calculated are Girder Beams, Floor Plates, Diaphragms, and Deck slabs which will be attached to the attachment. The following is an example of the calculation of superstructure reinforcement from Girder Beams.

1. Reinforcement of Beam Girder (PCI-Girder)

Flexure Reinforcement of Beam Girder

Based on calculations of Midas Civil 2022, all prestressed concrete elements meet the minimum flexure reinforcement requirements. Therefore, for bending reinforcement used for reinforced concrete based on SNI 2847-2019 is for beams with tendons without adhesion, the minimum area of longitudinal thread reinforcement with adhesion (A_{smin}) must be:

 $A_{smin} = 0.004 A_{ct}$

where: Act = cross-sectional area of Girder beam

• Flexure reinforcement is needed for the Edge Section of PCI-Girder

Diameter of Rebar	: Ds	=	=	13 mm
Area of Rebar	: As	= [(1/4) π Ds ²]	=	132.732 mm ²
Cross-Sectional Area	: Ag	= [Midas Civil Calculation]	=	1320300 mm ²
Reinforcement Area Required	l : As_req	= [0.4% Ag]	=	5281.200 mm ²
Number of Rebar Required	: n	= [As_req / As]	=	39.788
Number of Rebar Used	:	40D13		

• Flexure reinforcement is needed for the Middle Section of PCI-Girder

Diameter of Rebar	: Ds	=	=	13 mm
Area of Rebar	: As	= [(1/4) π Ds ²]	=	132.732 mm ²
Cross-Sectional Area	: Ag	= [Midas Civil Calculation]] =	825550 mm ²
Reinforcement Area Required	d : As_req	I = [0.4% Ag]	=	3302.200 mm ²
Number of Rebar Required	: N	= [As_req / As]	=	24.879
Number of Rebar Used	:	26D13		

Shear Reinforcement of Beam Girder (PCI-Girder)

Based on trial and error in Midas Civil 2022 to control the shear capacity of the girder beam, it is found that the shear reinforcement used is

Diameter of Rebar	: Dv	=	=	13 mm
Number of Rebar	: nv	=	=	2
Area of Shear Reinforcemer	nt:Av	= [(1/4) * π * dv2 * nv]	=	265.465 mm ²
Specing of Field Reinforcem	iei:	D13-200		
Specing of Support Reinford	:ei	D13-100		

2. Reinforcement of Floor Slab

General Data of Floor Slab

Effective Width of Floor Slabs	: b	= [Initial Data]	=	2000 mm
Thickness of Floor Slab	: ts	= [Initial Data]	=	250.000 mm
Concrete Grade	: fc'	= [Initial Data]	=	30.000 MPa
Yield Strength of Rainforcement Steel	: fy	= [Initial Data]	=	420 MPa
Concrete Cover	: cd	= [Input]	=	30 mm

<u>Fle</u>	exure Rei	inforcement of Floor Slab	_	-	
	Df	= [Input]	=	16	mm
	φf	=	=	0.9	
	Mu	= [Midas Civil Calculation]	=	138.01	kN.m
	de	= [h - dc -0.5D]	=	212	mm
	β_1	= [fc' > 30 MPa]	=	0.85	
	ρ_{b}	= [$\beta1^{*}~0.85$ * fc'/ fy * 600 / (600 + fy)]	=	0.0304	kN.m
	Rnmax	= [$0.75*\rho b*fy*(1-\frac{1}{2}*0.75*\rho b*fy/(0.85*fc')]$	=	7.7695	kN/m ²
	Mn	= $[Mu / \phi]$	=	153.339	mm^2
	Rn	= $[Mn * 10^6 / (b * de^2)]$	=	1.706	kN/m ²
		Rn < Rnmax	=	OK!	
	ρ	= [$0.85*fc'/fy*(1-\sqrt{1-2 * Rn/(0.85*fc')})$]	=	0.0042	
	ρ_{min}	= [1.4 / fy]	=	0.0033	
	ρ	= [min (ρ , ρ min)]	=	0.0042	
	As	= [$\rho * b * de$]	=	1784	mm^2
	Smax	= [(1/4) * π * D ² * b / As]	=	225	mm
	S	=	=	100	mm
	Longitu	dinal Flexure Reinforcement Used	=	D16 -	100

Transverse Reinforcement of Floor Slab

Specing	of Transverse Reinforcement Used	=	D13 - 100
S		=	100 mm
Smax	= [(b * (1/4) * π * D ²)/ As_req]	=	222.101 mm
As_req	$= [(As_req * Pt)]$	=	1195.24 mm ²
Pt	= [Min (110/ \sqrt{S} , 67%]	=	67 %
Dv	= [Input]	=	13 mm

The following is a recapitulation of the reinforcement used in the superstructure of the bridge after the calculation,

Table 4.2 Beam Girder Reinforc	ement
Re <mark>inforcem</mark> ent Type	Specification
Flexure reinforcement of edge PCI-Girder	40D13
Flexure reinforcement of middle PCI-Girder	26D13
Field shear reinforcement	D13 - 200
Support shear reinforcement	D13 - 100
Table 4.3 Floor Slab Reinforce	ment
Rei <mark>nforcement Type</mark>	Specific ation
Reinforcement Type Longitudinal flexure reinforcement	Specification D16 - 100
Reinforcement TypeLongitudinal flexure reinforcementTransverse flexure reinforcement	Specification D16 - 100 D13 - 100

Reinforcement Type	Specification
Flexure reinforcement	D13 - 200
Shear reinforcement	D10 - 200

Table 4.5 Deck Slab Reinforcement

Reinforcement Type	Specification
Longitudinal flexure reinforcement	D10 - 200
Transverse flexure reinforcement	D10 - 300

4.2.7. Other Detailing of Bridge Superstructure

Elastomer Bearing Pad 1.

> Elastomer-bearing pads are an important element in bridge construction that absorb and distribute loads and movements between the bridge structure and its supports such as abutments. Bearing pads help maintain the bridge's stability and ensure that the force and movement received by the bridge can be handled effectively while reducing damage to the structure of the bridge itself.

> based on the elastomeric bearing data mentioned earlier with dimensions of 600 cm x 600 cm x 97 cm as shown in the figure below.

The elastomer bearing pad used must withstand the reaction of the bridge superstructure so that there is no damage to the pad when receiving the load. The check was carried out that there was an allowable load that could be carried by the elastomer bearing pad and the reaction of the bridge superstructure as shown in the data below.

 Allowable Compressive Strength of Elastomer Fn = 2930.000 kN

KEDJAJAAN

- Compressive Strength of Superstructure Reaction Fz •
- = 2212.008 kN
 - $Fz \leq Fn$ (OK)

BANGSA Based on the above check, the elastomer can withstand the load generated by the reaction of the bridge superstructure

Connectors Between Segments (Pin Connector) 2.

Control UNTUK

In this research, the bridge designed is a segmental prestressed concrete bridge that requires a connection to connect between the segments. The type of connection used is Pin Connector with details as shown in the figure below.

4.3. DESIGN OF BRIDGE SUBSTRUCTURE AND FOUNDATION

4.3.1. Preliminary Design of Bridge Substructure and Foundation

The bridge substructure consists of several parts such as the breast wall, back wall, wing wall, and approach slab. The breast wall is the bridge's substructure at the start and end of the bridge. This bridge's substructure supports the superstructure and as a transition from oprit to the bridge floor. The piles from the oprit and the road body are held by the back wall, while the side piles are held by the wing wall. Meanwhile, the approach slab is useful for connecting roads and bridges so that there is no too noticeable change in height on both.

In the planning of the prestressed concrete bridge, the height of the planned abutment is 9 meters. Based on *Panduan Teknik pelaksanaan jembatan (2021)*, abutments with a height ranging from 6-12 meters generally use inverted T-type abutments. So the substructure that will be designed has dimensions like the one in the image below.

Figure 4.50 Dimension of Bridge Substructure

As previously explained, According to FHWA NHI-05-042 Design and Construction of Driven Pile Foundation, page 7-4, the type of foundation that matches the soil conditions is the pile foundation with a depth of 15 meters and a pile diameter of 0.8 meters and has 10 piles shown in the figure below.

Figure 4.51 Dimension of Pile

4.3.2. Structural Analysis of Substructure Using Midas Civil 2022

The stages that can be carried out in the analysis of the substructure and foundation using Midas Civil 2022 include the following.

1. Open Midas Civil 2023 that has been installed on your PC so that the initial display appears as shown below, then select New Project to create a new worksheet.

		midas Civil		X 🗣 🗆
View Structure Node/Element Propertie:	s Boundary Load Analysis Results	PSC Pushover Design Rating Query Tools		∰ Help @ ×
Redraw Initial Previous Comer Named View	Hidden Constant Select *	Dip → → □ UCS/CCS * □ □ Close ● Next ●	e Tile Horizontally Tile Vertically Coscade Wardows Tax	
	Alender View Select		WHOW HE	
Tere Menu Tables Tables Stocking Tables Stocking Tables Court Tables Court Tables Court Tables	\$ (0) R 1 k	Welcome to MIDAS	Contact us 1 A MIDAS Account	Task Pane 9 × Image: Constraint of the state of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constraint of the state pane Image: Constrate pane Ima
	Go to MIDAS Support	Go to Download Page	Go to midasbridge.com	IA 2 TA 1 TA 1ES More Projects * User Defined Page *
	Recent		= •	Import User Defined Page
	+	-second and a second	4115	
	New Project	TA Cobe3 I TA Cobe1 2004 ID 31 Demicine 2004 ID 31 Demicine 2004 ID 30 Demicine	1 762 E	→ → →
javasoriptprojectNewOpen('new', ''):	Analysis Message & Analysis Message		G: :10000	v v v v v v v v v v v v v v v v v v v

Figure 4.52 Initial View of Midas Civil 2022

 Define the material used in modeling the bridge's substructure to be analyzed, which has been mentioned in the previous substructure and foundation data, such as fc'30 concrete by selecting Properties > Material > Material from the Main Menu as shown in the figure below.

	Users\Afdhii\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Struktur Bawah] - [MIDAS/Civil]	_ # X
View Structure Node/Element Properties Boundary Load Analysis Results PSC	Pushover Design Rating Query Tools	₩ Help ' = # 1
Verter Social Volume Properties Neurol (Social Volume Properties Neurol (Social Neurol (Social) Neurol (Social) <th< td=""><td>Tableme During During During During Image: Marrier down Marrier down Marrier down X Image: Marrier down Image: Marrier down X Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down</td><td>M reg</td></th<>	Tableme During During During During Image: Marrier down Marrier down Marrier down X Image: Marrier down Image: Marrier down X Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down Image: Marrier down	M reg
- Th Plan - Th Plan	Neuron's Ream : : Thermal Coefficient : 0.0006+00 (J/p2) Weight Groups : 0.40x+3 Concrete : 2.60056+10 (J/p2) Modular of Interday : 2.60056+10 (J/p2) Present's Ream : 0.50667 Thermal Conference : : 0.50664	i di La di Grapi 0 i li⊷ TastiscOrapi 0
Assign Writee Reading Beam Tendon Primary Force - Static Analysis No selected objects exist!!! >> [[]] CommentMexamp / Assign Humary /	Winder Nermany 2.454+44 March 3 Dise Koss Bensty: 2.44 March 3 Pacetry bala March 404 March 404 Pacetry bala March 404 March 404 Database Material Name Note: March 404 Thermal Transfer March 1000 March 1000 Deruges Balas 1 0 March 404	3 Pre Meru 2 Tasi Dune

Figure 4.53 Material Properties

 Next, Define Section Properties for the pile used by selecting Properties > Section > Section Properties from the Main Menu as shown in the figure below.

	Civil 2022 - [C\Users\	Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Struktur Bawah] - [MIDAS/C	ivil) 🗕 🗗 💥
View Structure Node/Bement Pro	perties Boundary Load Analysis Results PSC Pus		
User Define Thange Property	' 🛃 🚽 🛩 💷	Section Data X	
Properties Comp. Strength	Plastic Section Section Plate Stiffness Tapered Section Material Properties Manager Scale Factor Group Resultant	Dit/User Value SRC Combined PSC Tapered Composite Steel Girder	
Material Tir Properties	×		
Material Section Thickness	s] :	Section ID 1 Solid Round ~	
Tables Works Group		Name Pie Olser ODB UNI	Tables Works Group Report
Works 1 File	User SR Medife		The Group
Nodes:256	Delete	Sect. Nome	Piecep [Node=35, Element=24]
-> Beam: 150	Copy		- Find Node-11: Element 6]
Properties	Import	Get Data from Single Angle	- F Bearing [Node-0, Element-0]
-[1] 1:Fc30	Renumber	D& Harre ABC10(05)	-Ef Wingwall Kanan [Node-14:Element-7]
		000110100	- Load Group : 0
-#1:15		D 1 m	
	1 ··· · · ·		
B L Boundaries			
Type 1[1110			
a + State Load Care	Close		
a Eb care con care			4
		Consider Shear Defermation.	
		Offset : Center-Center	
	4 C Start Page C MIDAS/Civil C Nodes C	Charge Offset	Tree Menu 2 Task Pane
Message Window		Show Celculation Results OK Cancel Apply	* ×
Reading Beam Tendon Prima:	ry Force - Static Analysis		
No selected objects exist !!!			1
>>			
Command Message ∬ Aralysis Message /			
For help, press F1		Vonei U: 1.55. 9, 8.25 G: 1.55. 9	
	Figure 4	4.54 Section Properties	

4. Then also define the Thickness of the Pilecap, Breastwall, Backwall, Approach Slab, and Wingwall used by selecting Properties > Section > Thickness from the Main Menu as shown in the figure below.

	Civil 2022 - [C\Users\Afdhil\Docum	nents\Dokumen Kuliah\Tugas Akhir\data Midas\Struktur Bawah] - [MIDAS/Civil]	
View Structure Node/Ecrinert Properties Soundary Image Properties Comp Strength Material © Comp.Strength Image Property @ Comp.Strength © Comp.Strength Image Property	Load Analysis Results PSC Pushover Design Design Control (Control (Contro)	gn Reting Overy Tools Reting Overy Tools Additional Control Data * Additional Control Data * Corols Additional Control Data * Corols Additional Control C	¥€ Hep ' ∽ ¢ *
Muta: Time Legending Text Accord Time Accord Text Accord Time Accord Text Accord Time Accord Webb Window Time Accord Webb Time Accord Time Accord </td <td>CPRet 600 Feet 100 Fe</td> <td>Vale (strated) Vale (strated) Padread 3 P</td> <td>Creat Mercu 2 0 × Creat Mercu 2</td>	CPRet 600 Feet 100 Fe	Vale (strated) Vale (strated) Padread 3 P	Creat Mercu 2 0 × Creat Mercu 2
4 Start Fee Message Window Reading: Ream Tenden Primary, Porce - S	sè 🕃 MIDAS/Civil 🕃 Nodes 🕃 Bernents	Show Calculation Result OK Cancel Appy	Tree Menu 2 Task Pane
No selected objects exist!!!	sado maryoto		1
((())) Command Message ∫ Analysis Nessage ∫ For Holps press F1		Nonel U: 1.55. 9, 825 G: 1.55. 9, 825	N v m v 0 HC F no v 2 00 / 2 0

Figure 4.55 Thickness

5. Create a node for each element of the substructure and foundation that is useful for the modeling by selecting Node/Elements > Nodes from the Main Menu. In the creation of this node, it can be done by copying, rotating points, etc. according to the coordinates of the node to be created as shown in the figure below

6. Then create an element from each substructure and foundation element of the previously created node by selecting Node/Elements > Element from the Main Menu as shown in the figure below.

Figure 4.57 Create Elements

 Connect each element of the structure whose nodes are not bound to each other by selecting Boundary> Link > Elastic Link from the Main Menu and for Elastic Link Data select Rigid as shown in the figure below.

8. Then define the support on the pile foundation by selecting Boundary > Support > Define Support from the Main Menu as shown in the figure below.

Figure 4.59 Define Support

9. Next, check the modeling of the bridge substructure and foundation that has been carried out by performing an Analysis and see the Displacement Contour that occurs, if the results of the Displacement Contour produced are like the figure below, then we can proceed to the loading stage.

Figure 4.60 Checking Substructure Modeling by Viewing Displacement Contour

 Create a Load Case for each load to be inserted by selecting Load > Load Type > Static Load > Create Load Cases > Static Load Cases from the Main Menu as shown in the figure below.

		Civil 2022 - [C\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Struktu	r Bawah *) - (MIDAS/Civil) 📪 🛱 🕽
View Structure Node/Element Prope	erties Boundary Loa		
Define Supports Supports Supports Supports	Implie Implie Implie Implie Implie Jastic Rigid General Implie Implie Link Link Link Implie	Le the set of the tool Mode Case A constraints 200 Effective Width Brank Zene Kince 300 the Set of the Set o	× 10.
Tree Menu • X	* * 0/1 *	Static Load Cables	Tree Menu 2 4 ×
Intel Work Cross Report Work Products P	Hì lor	Norm : Self Ving/tt	Both Week Cross Broots Provide Constraints Provide Configuration Provide Confi
	d C. Start Page	MIDAS/Civil C. Nodes C. Flements	b Tree Mercu 2 Task Pane
Message Window			9 ×
YOUR MIDAS JOB IS SUCCESSFULLY TOTAL SOLUTION TIME: 0.3	COMPLETED 5 [SEC]	C:\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\dat	a Midas\Struktur Bawah
H + + H Command Hessage Analysis Message			1 -
For Help, press F1		Node-259 U: 1.25.715.75	G:1.25.715.75 N ∨ m ∨ 🖓 🕮 🕨 ro ∨ 🕄 🔳 🖓 🖉 2

Figure 4.61 Load Case

11. Next, input load from the superstructure pedestal that has been generated from the superstructure analysis previously performed for each load from the superstructure by selecting Load > Load Type > Static Load > Structure Load/Masses > Nodal Loads from the Main Menu as shown in the figure below, with the following data.

• Sel	f-weight of	the Superstructure	\mathbf{F}_{SW}	=	721.560	kN
• Bar	rrier and Sid	ewalk Load	F_{MA1}	=	162.978	kN
• We	earing Surfac	e load	F _{MA}	=	38.733	kN
• Pec	destrian Load	1	F_{TP}	=	48.854	kN
• Lin	ne Load		F_{TD}	=	337.704	kN
• Tru	ick Load	THE DELTAS AT	FTT	-	323.491	kN
		NILV DINDIALAN IL	1 1 1 1 1 1	A		
C. View	Structure Node/Element Properties	Civil 2022 - (C\Users\Afdhil\Documents\Dok Boundary Load Analysis Results PSC Pushover Design Rati	imen Kuliah\Tugas Akhir\d. ng Query Tools	ata Midas\Strukt	ur Bawah) - [MIDAS/Civil]	u a tit Help
Combination	Image: Structure Node/Eement Properties A Reactions * Image: Stresses * Image: Stresses * Image: Stresses * Image: Deformations * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresses * Image: Stresse	Ciril 2022 - (C)Literen (Archin) Documentin) Dock Boordary Load Analysis Results PSC Pushtoren Design Patial Streampolement - Streampole Stre	Imen Kuliah\Tugas Akhir\di ng Query Tools T.H Results * 禅 Ca T.H Graph/Test * Stage/Step Graph	ata Midas\Strukt ible Control * mber/Reaction * ndon Loss Graph	ar Bawah) - (MIDAS/Civil)	∎ ¥¥ Heio
Components Components	Control Contro Control Control Control Control Control Control Control Control Co	All 222 - (Culture UMANDACOUNTED) Read State of the second secon	In Kulavi Ugas Akirdu Garage Santa (14 Results * (14 Results * (14 Results * (16 Resul	ta Midar(Strukt Role Control * Innber/Rassion * noton Loss Graph <u>Bridge</u>	re flavah) - (MDAXC/ost)	X Heg Xoraci Xoraci Xoraci Xoraci Conce Report Xoraci Xoraci

30°

0.33

kN

=

=

Φ

12. Next, input the load due to active ground pressure on the Backwall, Breast wall, and Wingwall by selecting Load > Load Type > Static Load > Pressure Load > Pressure Load from the Main Menu as shown in the figure below with the following values.

Figure 4.62 Node Load of Loads from the Superstructure

- Specific Gravity of Soil $\gamma = 18 \text{ kN/m}^3$
- Angle of Internal Friction
- Cohesion of Soil
 K_a
- Active Ground Pressure for Depth 0 m $P_{TA1} = 0.00 \text{ kN/m}^2$
- Active Ground Pressure for Depth 2.4 m $P_{TA2} = 7.20 \text{ kN/m}^2$
- Active Ground Pressure for Depth 5.5 m $P_{TA3} = 16.5 \text{ kN/m}^2$
- Active Ground Pressure for Depth 7.5 m $P_{TA4} = 22.5 \text{ kN/m}^2$

13. The next step, remove the foundation from the pile that we have made previously and input the Boundery from the pile with the NSPT data from the soil according to the data that has been presented previously by selecting Boundery > Spring Support > Integral Bridge from the Main Menu then on Soil Spring Type select Pile Spring and enter soil data according to the available data as shown in the figure below.

	Civil 2027	- [C:\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data 1	Midas\Struktur Bawah] - [MIDAS/Civil]	- a II
View Structure Node/Bernent Pro	operties Boundary Load Analysis Results	PSC Pushover Design Rating Query Tools		💥 _{Нер} • •
Define Supports Suppo	Link General Children	Unear Constraints To Effective Width Parent Zone Effects & Define Label Dir Note Internet Sone States & Internets for Load Cases Internet	? · · · · · · · · · · · · · · · · · · ·	
Tree Menu 🔹 🔍	Hi Sese		21 1	Tree Meru 2 9 ×
Route Developed Southany Mass: Goal Standard Strain Image: Southany Image: Southany Standard Strain Image: Southany Image: Southany Defaultions Spare Image: Southany Image: Southany Defaultions Spare Image: Southany Image: Southany Pails Spring Data Southany Southany Southany Southany Southany Orwood Level 2.72 Image: Southany Pris Spring Data Southany Southany Southany Southany Southany Octowed Level 2.72 Image: Southany	11 44			Date Work Core Epoch Wran
Earth Pressure Coeff. at 0.5 rest (Ko)	A Chart Proce C MIDAS/Charl			Tax May 2 Tax Dawn
Measure Window Creating AVI File, Press ESC Recording Ended >> 11115 Command Wrange (Antyon Wrange / For Heis press)	Figure 4.	55 Integral Bridge (SIGNO CONCEPTION	Exclusion = 0 × 1 (N ~ n ~ 0 + 0 0 nu ~ () = 1 € / 218

14. Input the Spectral Response earthquake data such as the earthquake data that we have entered into the Spectral Response earthquake data on the superstructure and also make a Load Case from the Spectral Response by selecting Load > Load Type > Dynamic Loads > Response Spectrum Data from the Main Menu as shown in the figure below.

Figure 4.66 Response Spectrum of Padang

	Civil 2022 - [C:\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Struktur Bawah *] - [Mi	DAS/Civil] 🗆 🛱 🖾
View Structure Node/Element Properties Boundary Load Analysis	Results PSC Pushover Design Rating Query Tools	嶽 Help × - € ×
Static Loads Dynamic Loads Settlement/Misc. Temn/Prestress Construction State Load Tables		
Moving Load Heat of Hydration RS RS Load Gi Functions Cases Con	ibal Load Time History Ground Dynamic Time Varying Multiple Support Define Result Train Load rol * Cases Functions Acceleration Nodal Loads Static Loads Excitation Functions Generator	
Load Type Response Spectrum Data	Time History Analysis Data	
· ← · → · ! @ \# \\$ 💽 🗶 (● Ø 🖄 🗣 🐵 🔪 🔤 😤	- 1212日本1212日121日121日121日121日121日121日121日1	
Tree Menu 9 × Response Spectrum Load Cases Characteristic of womping relation		Tree Menu 2 0 ×
Interpolation of Spectral Data		Nodes: 256
C Linear O Logerithm		e I Properties
		0-I Section:1 0-Ft Thickness:4
Description : Gempa Respon Spectrum Are		e ⊥ Boundaries e 1 Point Spring Supports : 460
		⊖-≦ Linear:160 Type 1 [005000 000000]
LoadCase Direction Scale		Type 2 [005000 000000]
RS Eqs X-Y 1 RS Eqy X-Y 1		Elastic Link: 36
		L [®] BNsp/Func-2 [Force . Symm.]
		Le BNsprFunc-7 [Force, Symm]
		Event in the system of the sys
Operations	2 C C C C C C C C C C C C C C C C C C C	- C IbNsprFunc-13 [Force , Symm.]
Add Modify Delete		- [2] IbNspiFunc-17[Force . Symm] - [2] IbNspiFunc-19[Force . Symm]
		L ^a IbNsprFunc-21 [Force , Symm.] L ^a IbNsprFunc-23 [Force , Symm.]
Eigenvalue Analysis Control	· · · · · · · · · · · · · · · · · · ·	 With the second s
Response Spectrum Functions		 ENsprFunc-29 [Force . Symm] ENsprFunc-31 [Force . Symm]
		Lie IbNsprFunc-33 [Force , Symm]
	a	A Text Marcola Texts Prove
Alexana Mindow	1	a v
Allerende, Allerende		
		· · · · · · · · · · · · · · · · · · ·
>>	-	
For Help, press F1	Node-70 U: 2.5, 0, 3.25 G: 2	5. 0, 3.25 kN v m v 🛠 🗈 no: v 🔋 1 🕸 / 2 🗢
UNIT	ALAS	× 1
	Elever A CT DC Land Care	
	rigure 4.07 KS Load Cases	

15. Then make a combination of loads used following SNI 1725:2016 by selecting Result
> Combination > Load Combination from the Main Menu as shown in the figure below.

Civil 2022 - [C\Users\Afdhil\Documents\Dokumen Kuliah\Tugas Akhir\data Midas\Struktur Bawah 1] - [MIDAS/Civil]	aP 32
🚩 View Structure Node/Element Properties Boundary Load Analysis Results PSC Pushover Design Rating Query Tools	
📭 🕂 🔶 Reactions * 🙀 Stresses * 🙀 Strain * 💆 Beam/Bernent * 🔮 Mode Shapes * 🛛 🖂 Influ: Lines * 🔃 T.H. Results * 🐺 Cable Control * 📷 📰 📰	
🔛 📄 Deformations * 🗱 Diagram * 🕴 Local Direction.	
Load Combination 1 2 And a Results * Academic Results of RS Weight Tracer * Stage/Step Graph Tra	
Combination Results Load Combinations	
ree Menu a x General Steel Design Concrete Design SRC Design Concrete Design C	7 × 🖥
Response Spectrum Load Cases and Factors Load Combination List Load Cases and Factors Ables Works Group. Report	
Spectrum Functions No Name Active Type Description LoadCase Factor 0 Constraints 206	
Function Name (Damping Rate) 1 Kusal 1 Strong Add P Self Weight Frees Surger Structure 1 2000 P Departes	6
Z Road i Suerigi Pudu Z Road i Suerigi Pudu	1 2
4 Kuat II-Streng Add Wearing Surface (MA)(ST) 1.3000 U-B Thickness 4	10
5 Ektrem Streng Add Pedestrian Load (TO)(ST) 1.8000 @ Pedestrian Load (TO)(ST)	
6 Ektrem Streng Add Beban Lajur (TD)(ST) 1.8000	.00]
Active Earth Pressure (IA)(S1) 1,2500	
- Elsternover	
Demping Method	A: 150
0 🕤 Static Load Case 1 (SetWei	ight; Beban akibat be 🛛 🧧
Convertien by Demoins Ratio	ight From Super Struc
- (1) Notal Loads 5	And Sidewalk (MA) : B
Interposition or Spectral Usita	
□ Linear □ Logarithm □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Surface (MA) ; Bebai
0 🗊 Static Load Case D Pedestri	ian Load (TO) ; Bebar
e 🕥 Static Load Case 6 Beban L	ajur (TD) : Beban Lajı
Description : Gempa Respon Spectrum Arz	(ruck (TT) ; Beban aki
• Notal Loads: 5	
LoadCate Direction Scale	am Preasure (TA); T
KS top: XY 1	
Copy Import Auto Generation Spread Sheet Form Free Menu 2 Task Pane	
Message Workow Citizen Affel/Decement Decement/D	÷ ×
The (Faith) Section and the section of the section	<u>^</u>
	· · ·
	n v 2 10/ 2 4

Figure 4.68 Load Combination

Next, analyze the bridge structure that has been modeled earlier by selecting Analysis
 > Perform > Perform Analysis from the Main Menu or you can press the F5 key, then all the results of the analysis can be seen in the Result menu as shown in the figure below

4.3.3. Stability of Bridge Abutment

To ensure that the abutment can work properly and safely, stability calculations must be carried out by paying attention to several aspects. Some of the factors that need to be calculated and analyzed include:

1. Abutment Stability Against Tipping (Rolling)

The stability of the abutment against the tipping is a condition in which the abutment can prevent the occurrence of reversal (Rolling) or rotation caused by the moment acting on the structure. This reversal can occur when the load received by the abutment produces a moment greater than the abutment's ability to hold it. To keep the abutment from tipping over, it is important to ensure that the moment acting on the abutment is less than the holding moment provided by the structure and the soil that supports it. The following is the calculation of the stability of the Abutment Rolling,

Vertical Moment	: Mv	= [Midas Civil Calculation]	=	699.099 kN.m
Horizontal Moment	: Mh	= [Midas Civil Calculation]	=	332.053 kN.m
Factor of Safety	: SoF		=	2
Factor of Safety For Tipping	: Soft	= [Mv/Mh]	=	2.105
Control		= [SoFt > SoF]	=	OK!

2. Abutment Stability Against Shearing

The abutment must be stable against horizontal forces so that it does not shift. The calculation for friction stability can be done by comparing the shear force received with the shear force that can be resisted by friction between the abutment and the foundation.

Angle of Internal Friction	:	=	=	30 °
Cohesion of Soil	: C	=	=	1 kN/m2
Area of Abutment Base	: A	= [P.L]	=	50 m2
Vertical Force	: V	= [Midas Civil Calculation]	=	1595.59 kN
Horizontal Force	: H	= [Midas Civil Calculation]	=	325.934 kN
Factor of Safety	: SoF		=	1.5

	$[((C * A) + (V * \tan \phi)) /]$	=	2.980
Control =	[SoFx > SoF]	=	OK!

4.3.4. Bearing Capacity of Pile Foundation

Foundation Bearing Capacity is the maximum capacity that the soil or foundation structure can bear without causing failure or excessive subsidence. The bearing capacity of the foundation is very important in the design of buildings or other structures because a foundation that does not have sufficient bearing capacity can result in damage to existing structures. The bearing capacity of a foundation can be calculated based on a variety of factors, including soil type, foundation depth, and the physical and mechanical properties of the soil on site.

N-SPT for Depth 0 - 6 m	: N1	= [Initial Data]	=	10
N-SPT for Depth 6 - 15 m	: N2	= [Initial Data]	=	50
Soil Specific Gravity for Depth 0 - 6 m	: γ1	= [Initial Data]	=	18 kN/m ³
Soil Specific Gravity for Depth 6 - 15 m	: γ2	= [Initial Data]	=	22 kN/m^3
Safety of Factor	: SoF	= [Initial Data]	=	2.5

Length of Pile	: H	= [Preliminary Design]	=	15 m
Pile Length at Depth 0 - 6 m	: H1	= [Preliminary Design]	=	6 m
Pile Length at Depth 6 - 15 m	: H2	= [Preliminary Design]	=	9 m
Diameter of Pile	: D	= [Preliminary Design]	=	0.8 m
Lateral Surface Area for Depth 0 - 6 m	: AS1	= $[\pi * D * H1]$	=	15.080 mm ²
Lateral Surface Area for Depth 6 - 15 m	: AS2	= [π * D * H2]	=	22.619 mm ²
Pile Area Tip	: At	= $[(1/4) * \pi * D2]$	=	0.503 mm^2

4.3.5. Reinforcement Calculation of Bridge Substructure and Foundation

The substructure and foundation components for which the reinforcement is calculated are Breast wall, Back wall, Wing wall, approach slab, Pile cap, and Pile which will be attached to the attachment. The following is an example of the calculation of superstructure reinforcement from Pile Cap.

1. Reinforcement of Breast Wall <u>General Data of Breast Wall</u>

Height of Breastwall	: h	= [Initial Data]	=	1200 mm
Longitudinal Width of Breastwall	: bx	= [Initial Data]	=	10000 mm
Transversal Width of Breastwall	: by	= [Initial Data]	=	5050 mm
Concrete Grade	: fc'	= [Initial Data]	=	30 MPa
Yield Strength of Rainforcement Steel	: fy	= [Initial Data]	=	420 MPa
Concrete Cover	: dc	= [Input]	=	50 mm

Axial - Flexure Reinforcement of Breast Wall

Db	= [Input]	=	25 mm
Mux	= [Midas Civil Calculation]	=	699.099 kN.m
Muy	= [Midas Civil Calculation]	=	332.053 kN.m
Pu	= [Midas Civil Calculation]	=	1595.59 kN
S	= [Input]	=	150 mm

n	= [bx / s]	=	67
As	= [$n * (1/4) * \pi * Db^2$]	=	65777.10 mm ²
Ag	= [bx * by]	=	12000000 mm ²
ρ	$= \left[As / Ag \right]$	=	0.548 %
$ ho_{min}$		=	0.500 %
	$\rho_{min} > \rho$	=	ОК
Axial-F	lexure Reinforcement Used	=	D 25 - 150

With the help of SpColumn software, you can get the axial-flexural interaction diagram of the Breast wall as shown in the image below,

The combination of Pu and Mu loads in the axial-flexural interaction diagram of the Breast wall indicates that the Breast wall section can carry the loads that occur. The interaction diagram above is an interaction diagram of the abutment cross section using the main reinforcement is D25 - 150

Transverse Reinforcement of Breast Wall

D	= [Input]	=	16	mm
λ	=	=	1	
β	=	=	2	
φv	= [SNI 2847-2019]	=	0.75	
Vu	= [Midas Civil Calculation]	=	316.681	kN.m
b'	=	=	1000	mm
de	= [h - dc -0.5D]	=	1142	mm
Vc	= [0.083 * β * $\sqrt{(fc Mpa)}$ *b *de]	=	10383.29	kN
	= [0.5 \phi V c]	=	3893.732	
Vu < 0.	5 øv Vc			
Shear R	einforcement is Required			
Av_mi n	= [$(0.083^{*}\lambda^{*}\sqrt{(fc Mpa)^{*}b^{*}b'}) / fy]$	=	10824.04	mm2
S		=	150	mm
Av_use	= [(1/4) * π * D ² * b / S]	=	13404.13	mm2
	Av_use < Av_min	=	OK!	
Shear R	einforcement Used	=	D16 - 1	150
ansverse	Reinforcement of Breast Wall	65)	3	
D	= [Input]	=	16	mm
λ	=	=	1	
β	=	=	2	
φv	= [SNI 2847-2019]	=	0.75	
Vu	= [Midas Civil Calculation]	=	316.681	kN.m
b'	=	=	1000	mm
de	= [h - dc - 0.5D]	=	1142	mm
Vc	= [$0.083 * \beta * \sqrt{(fc Mpa) * b * de}$]	=	5191.643	mm2
	$= [0.5 * \phi v * Vc]$	=	1946.866	
	D λ β φv Vu b' de Vc Vu < 0. Shear R Av_mi n S Av_use Shear R ansverse D λ β φv Vu b' b' λ β	D = [Input] λ = β = ϕv = [SNI 2847-2019] Vu = [Midas Civil Calculation] b' = de = [h - dc -0.5D] Vc = [0.083 * β * $\sqrt{(fc Mpa)}$ * b * de] = [0.5 ϕv Vc] Vu < 0.5 ϕv Vc Shear Reinforcement is Required Av_{mi} = [(0.083* λ * $\sqrt{(fc Mpa)}$ * b*b')/fy] s $Av_{use} = [(1/4) * \pi * D^{2} * b / S]$ $Av_{use} < Av_{min}$ Shear Reinforcement Used $av_{use} < Av_{min}$ Shear Reinforcement of Breast Wall \sqrt{AAV} D = [Input] λ = β = ϕv = [SNI 2847-2019] Vu = [Midas Civil Calculation] b' = de = [h - dc -0.5D] Vc = [0.083 * β * $\sqrt{(fc Mpa)}$ * b * de] = [0.5 * ϕv * Vc]	$D = [Input] = $ $\lambda = $ $\beta = $ $\varphi v = [SNI 2847-2019] = $ $Vu = [Midas Civil Calculation] = $ $b' = $ $de = [h - dc -0.5D] = $ $Vc = [0.083 * \beta * \sqrt{(fc Mpa)} * b * de] = $ $= [0.5 & \phi v Vc] = $ $Vu < 0.5 & \phi v Vc$ Shear Reinforcement is Required $Av_{mi} = [(0.083 * \lambda * \sqrt{(fc Mpa)} * b * b') / fy] = $ $S = $ $Av_{use} = [(1/4) * \pi * D^{2} * b / S] = $ $Av_{use} < Av_{min} = $ Shear Reinforcement Used $I = $ $Particular (1/4) * Part = $ $Particular (1/4) * Part = $ $Part $	D = [Input] = 16 λ = 1 β = 2 ϕv = [SNI 2847-2019] = 0.75 Vu = [Midas Civil Calculation] = 316.681 b' = 1000 de = [h - dc -0.5D] = 1142 Vc = [0.083 * β * $\sqrt{(fc Mpa)}$ *b *de] = 10383.29 = [0.5 ϕ v Vc] = 3893.732 Vu < 0.5 ϕ v Vc Shear Reinforcement is Required Av_nni = [(0.083* λ * $\sqrt{(fc Mpa)}$ *b*b') / fy] = 10824.04 S = 150 Av_use = [(1/4) * π * D ² * b / S] = 13404.13 Av_use < Av_min = OK! Shear Reinforcement Used = D16 - 1 λ = 116 λ = 11000 λ = 1142 λ = 10000 λ = 100000000000000000000000000000000000

 $Vu < 0.5 * \phi v * Vc$

Shear Reinforcement is Required

Sy		=	600	mm
Vs	$= [(Vu / \phi v) - Vc]$	=	-4769.4	kN
Av_1	= [(Vs * b) / (fy * de)]	=	-99437.1	mm2
Av_min	= [$(0.083 \times \lambda \times \sqrt{(fc Mpa) \cdot b \cdot b')} / fy]$	=	10824.04	mm2
Av	= $[Max (Av_1, Av_min)]$	=	10824.04	mm2
Sx_max	= [$(b*s*(1/4)*\pi*D^2) / (Av*Sy)$]	=	309.5916	mm
Sx		=	300	mm

Shear Reinforcement Used

= **D16 - 300/600**

2. Reinforcement of Pile Cap <u>General Data of Pile Cap</u>

Height of Backwall	: h	= [Initial Data]	=	700 mm
Longitudinal Width of Backwall	: bx	= [Initial Data]	=	10000 mm
Transversal Width of Backwall	: by	= [Initial Data]	=	2400 mm
Concrete Grade	: fc'	= [Initial Data]	=	30 MPa
Yield Strength of Rainforcement Steel (I	[: fy	= [Initial Data]	=	420 MPa
Concrete Cover	: dc	= [Input]	=	50 mm
WTUK KEDUNUAAN BANGSI				

Longitudinal Flexure of Pile Cap

D	= [Input]	=	25 mm
$\phi_{\rm f}$	= [SNI 2847-2019]	=	0.9
Mu	= [Midas Civil Calculation]	=	332.427 kN.m
b'	=	=	1000 mm
de	= [h - dc - 0.5D]	=	1437.5 mm
β ₁	= [fc' > 30 MPa]	=	0.85
$ ho_b$	= [β 1* 0.85 * fc'/ fy * 600 / (600 + fy)]	=	0.030357

Rnmax	= [$0.75*\rho b*fy*(1-\frac{1}{2}*0.75*\rho b*fy/(0.85*))$	fc')]=	7.770 kN/m ²
Mn	= $[Mu / \phi]$	=	369.36 kN.m
Rn	= $[Mn * 10^6 / (b' * de^2)]$	=	0.179 kN/m^2
	Rn < Rnmax	=	OK!
ρ	= $[0.85*fc'/fy*(1-\sqrt{1-2 * Rn/(0.85*fc)})]$	'))]=	0.0004
$ ho_{min}$	= [0.5 / fy]	=	0.0012
ρ	= $[\min(\rho, \rho \min)]$	=	0.0012
As	= [$\rho * b' * de$]	=	1711 mm ²
Smax	= [(1/4) * π * D ² * b' / As]	=	287 mm
S	=	=	150 mm
Longitu	dinal Flexure Reinforcement Used	=	D25 - 150
<u>Transverse</u>	<u>Reinforcement of Pile Cap</u>		
D	= [Input]	=	19 mm
As'	= [50% * As]	=	856 mm ²
S'max	= [(1/4) * π * D ² * b / As]	=	331 mm
S'	=	=	150 mm
Longitue	dinal Flexure Reinforcement Used	=	D19 - 150
<u>Shear Rein</u> j	forcement of Pile Cap	Pash	5
Dv	= [Input]	=	16 mm
λ		=	1
φv	= [SNI 2847-2019]	=	0.75
Vu	= [Midas Civil Calculation]	=	110.527 kN
de	= [h - dc - 0.5Dv]	=	1442 mm
b''	=	=	1000 mm
Vc	= [(1/6) $\sqrt{(fc Mpa)} b de$]	=	13163.6 kN
	= [0.5 \phi Vc]	=	4936.35 kN

 $Vu < 0.5 \phi v Vc$
Shear Reinforcement is Required

Choor Do	inforcement Used		D16 200/600
Sx	=	=	300 mm
Sx_max	= [$(b*b'*(1/4)*\pi*D^2) / (Av*Sy)$]	=	309.5916 mm
Av	= $[Max (Av_1, Av_min)]$	=	10824.04 mm^2
Av_min	= [$(0.083*\lambda*\sqrt{(f'c Mpa)*b*b'}) / fy$]	=	10824.04 mm^2
Av_1	= [(Vs * b) / (fy * de)]	=	-214917 mm ²
Vs	= $[(Vu / \phi v) - Vc]$	=	-13016.2 kN
Sy	=	=	600 mm

Shear Reinforcement Used

UINT

D16 - 300/600

The following is a recapitulation of the reinforcement used in the superstructure of the bridge after the calculation,

LAS

Reinforcement Type	Specification
Axial - Flexure Reinforcement	D25 - 150
Transversal Reinforcement	D13 - 150
Shear Reinforcement	D16 – 300/600
Table 4.7 Back Wall R	einforcement
	Const Proved in a

Rennoi comono rype	Specification
Longitudinal Flexure Reinforcement	D19 - 150
Transversal Flexure Reinforcement	D13 - 150
Shear Reinforcement KEDJAJAAN	D13-300/400

Table 4.8 Wing Wall Reinforcement

Reinforcement Type	Specification
Longitudinal Flexure Reinforcement	D16 - 150
Transversal Flexure Reinforcement	D13 - 150
Shear Reinforcement	D13-300/400

Table 4.9 Approach Slab Reinforcement

Reinforcement Type	Specification
Longitudinal Flexure Reinforcement	D16 - 200
Transversal Flexure Reinforcement	D13 - 200
Shear Reinforcement	D13-300/400

Table 4.10 Pile Cap Reinforcement

Reinforcement Type	Specification
Longitudinal Flexure Reinforcement	D25 - 150
Transversal Flexure Reinforcement	D19 - 150
Shear Reinforcement	D13-300/400

Table 4.11 Pile Foundation Reinforcement

Reinforcement Type	Specification
Axial - Flexure Reinforcement	16D25
Shear Reinforcement	D16 - 100

UNIVERSITAS ANDALAS

4.4. 3D MODELING OF PRESTRESSED CONCRATE BRIDGE USING AUTODESK REVIT 2023

After obtaining the results of the analysis of the superstructure, substructure, and foundation of the prestressed concrete bridge with output in the form of parameters that can be used in modeling the bridge such as the dimensions of the bridge structure components and the required number of these components, the next step is to make a 3D model of the bridge. The model to be made is only limited to modeling the structure and architecture of the prestressed concrete bridge. The software that will be used to create a 3D model of the bridge is Autodesk Revit 2023 as previously explained.

The stages that can be done in performing 3D modeling using Revit Autodex 2023 include the following.

4.4.1. 3D Modeling of Bridge Structural Components

 Open Autodesk Revit 2023 installed on your PC. When the initial view of Revit 2023 appears, in the Model section, click New. Then the New Project dialog box will appear, on the File template select Metric-Construction Template, and on Create New select Project, and click OK as shown in the figure below.

	,	utodesk Revit 2023 - Home		< <i>9</i> 8	👤 futureafdhil 🔹 😿 🔞 •	-
¢	Recent Files					
MODELS	MODELS					
FAMILIES		New Project Template file Metric Construction Template	X Burnsa		R	
🖻 New	Jembatan PBGJ	Create new	O Project template	Revit Lembah Anai	PCI - H 90cm, L 16m.ifc	
 Recent Files Autodesk Docs 	/	ок с	Cancel Help		¢	
	TA Coba 2	Simple Beam	Project2	Project1	• newwwwww	
What's new	FAMILIES					
Online help Community forum Customer support	R			Π		
		Figure 4.71	New Project			

2. After that, the project display will appear according to the template that we have chosen previously as shown below, where there are restrictions on work or displays such as Level 1, Level 2, East, North, South, and West which we can later adjust as needed.

📕 🗈 🕞 🖓 • thirth • 🖨 🔛 🗮	· 🖍 🗈 A 😔 · 🔿 📰 😳 🖼 · 🖛	Autodesk Revit 2023 - Tugas Akhir - Jembatan Beton Prategang - F	Floor Plan: Level 1 🔹 🕅 👤 fi	tureafdhil - 🦙 🕐 - 🗗 🗙
File Architecture Structure Steel Precast S	Systems Insert Annotate Analyze Massing & Site	Collaborate View Manage Add-Ins Enscape** Modify	/ • •	
Modify Beam Wall Column Floor Truss Brace	Beam Connection Connection Automation	Rebar Area Sheet	Model Model Model By Shaft Text Line Group Face	Wall Vertical Domer Datum Work Place
Select • Structure	- contection Tourisation	Nennoncement +	wodel Open	g Datum Work Frane
Properties X	🖺 Level 1 🛛 X			
Floor Plan •		¢		Floor Plans Level 1 Level 2 Site
Graphics \$				- T.O. Fnd. Wall
View Scale 1:100				T.O. Footing
Scale Value 1: 100				- Ceiling Plans
Display Model Normal				- El Level 1
Detail Level Coarse				Level 2
Parts Visibility Show Original				Elevations (Building Elevation)
Visibility/Graphics Ove Edit				East
Graphic Display Options Edit				- North
Orientation Project North				- South
Wall Join Display Clean all wall joins				West
Discipline Architectural				Ell Legends
Show Hidden Lines By Discipline	<u>ې</u>		•	Schedules/Quantities (all)
Color Scheme Location Background				Sheets (all)
Color Scheme <none></none>				E En Greuns
System Color Schemes Edit				Revit Links
Default Analysis Displa None				
Sun Path				
Underlay *				
Range: Base Level None				
Range: Top Level Unbounded				
Underlay Orientation Look down				
Extents *				
Crop View				
Crop Region Visible		0		
Annotation Crop				
View Range Edit				
Associated Level 1				
Properties help Apply	1:100	_		
Click to select, TAB for alternates, CTRL adds, SHIFT unselect	ts. di	🖂 🖉 :0 🛛 🔚 💷 Main Model	v	♥ 4 ♣ 13 ₺ 0 २0

Figure 4.72 Worksheets of Autodesk Revit 2023

3. Next, enter one of the Floor plan worksheets to create a Grid that is used to help in creating drawings by selecting Datum > Grid on the Ribbon or you can type the shortcut "GR" and then arrange the grid according to the dimensions of the bridge that we will create as shown in the figure below.

4. then enter one of the Elevations (Building Elevation) worksheets to create a Level Line by selecting Datum > Level on the Ribbon or you can type the Shortcut "LL" and then set the Line Level according to the dimensions of the bridge that we will create as show5n in the figure below.

			And Personne of the local division of the lo	_					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
🞴 🖬 🕞 🔒 🤇	∂•\$ •\$	· 🗅 🔒 🛅	f 😐 - 💉 🗈 A	0.01	E 强 🖻 - 📼	Autodesk Revit	2023 - Tugas Akhir - Jemba	atan Beton Prategang - Elevi	tion: West	🔹 🛱 👤 futureafdhil	· 🗑 🔞 · 🛛 – 🗗 ×
File Architectu	re Structure	Steel Preci	ast Systems Inser	t Annotate	Analyze Massing & Si	te Collaborate Vie	w Manage Add-Ins	Enscape [™] Modify	••		
Modify Select •	Door Window	Component	Column Roof C	Ceiling Floor	Curtain Curtain Mullion System Grid	Railing Ramp Stai	r Model Model Text Line Group Model	Room Room Tag Separator Room	X Area * Area Boundary X Iag Area * Area *	By Shaft Face Opening Wall	Level Grid Seid Seid Wewer Datum Work Plane
Properties Properties Elevation: West Graphics View Scale Scale Value 1 Display Model Parts Visibility Visibility/Graphics. Graphic Display O. Hide at scales coa. Discipline Show Hidden Lines	g Elevation y Ele 1:100 100 Normal Coarse Show Original Edit 1:5000 Architectural By Discipline	Edit Type	Level Atas Jembatan	- 🔶 East	🕂 South	• West • • • • • • • • • • • • • • • • •		Level Atas Jend	atan 0		Cy Vers (a) Cy Vers (
Color Scheme Loc. Color Scheme Default Analysis D. Reference Label Sun Path Extents Crop View	None			_				Abut	ment		
Crop Region Visible Annotation Crop Far Clipping Far Clip Offset Scope Box Associated Datum Identity Data View Template View Name	No clip 27142.9 None None None West	R		_				Po			
Properties help		Apply	1:100 🗌 🗇 🄅	Se (22 \$23 \$20	9 🕞 🏭 🖬			-		4	
Click to select. TAB fo	or alternates. CTR	adds SHIFT	inselects.		Sh.		22 n 15 10 M	fain Model			

Figure 4.74 Creating a Level Line

5. Next, create a family of all bridge components to be modeled such as PCI-Girder, Tendon, Abutment, Sidewalk, and Barrier by selecting the file > New > Family and then after opening the dialog box, select the templates family according to the bridge component to be created. Then the bridge component in the family corresponds to the dimensions that have been obtained in the previous subchapter, then the result of the family of the bridge component will look like in the figure below.

Figure 4.76 Family Tendon and Anchor

Figure 4.79 Family Sidewalk

Figure 4.82 Family Elastomer Bearing Pad

6. Then input the family of all bridge components that have been made into the initial worksheet and adjust the location and number of bridge components according to the design that has been obtained previously, the result will look like in the figure below.

7. To place the components of the tendon that has been made on, input the tendon family that has been created earlier and then adjust the placement of the tendon at the end and middle of the span according to the position of the tendon that has been planned as shown in the figure below

🎴 🖪 🕞 🗖 🕼 • 🎝 • 🔅	🗅 🔓 🔛 😐 - 💉 🕫 A 😔 - 🔉 🔣 🗎	Autodesk Revi	2023 - Tugas Akhir - Jembatan Beton Pra	ategang - Section: Section 4	ፋ 🏭 👤 futureafdhil 🔹 🕁 🕐 🔹 🗕 🗗
File Architecture Structure Ste	eel Precast Systems Insert Annotate Anal	ze Massing & Site Collaborate	/iew Manage Add-Ins Enscape**	Modify .	
Modify Select - Properties Clipboard	Cope · · · · · · · · · · · · · · · · · · ·	P and a 2 m max	· Im		
Properties	PA Foundation Level Q (20)	3D Structures Parline Langer Birdon Le	et Cartino 2 Carti	an A X C Section 4 Conv 1	= Orniact Ornurar - Tunar Akhir -
Section Building Section Section: Section Section Complex View Section 1:100 Graphics View Section 1:100 Graphics View Section 1:100 Graphics View Section 1:100 Graphics Comp View Complex Comp View Comparing Comp View Comparin					Control C
Click to colort TAP for alternator. (TPI an		D.			

Figure 4.84 Tendon Position in End of the Span

🞴 🖪 🖻 🖥 🎧 • ని • ని	· 🗅 🔓 📑 🖴 · 🗸	* 🗈 A 🔞 • 🕈 🧮	Ng Feir ≠	Autodesk Revit 2023 - Tu	gas Akhir - Jembatan Be	eton Prategang - Section	:: Section 4 Copy 1	🔹 🕀 👤 futureafdhil 🔹	₩ 0.	- 8 ×
File Architecture Structure	Steel Precast System	ns Insert Annotate Ar	alyze Massing & Site	Collaborate View	Manage Add-Ins	Enscape [™] Modify	••			
Modify Select • Properties Clipboard	K Cope • D S O Cut • ∰ Cu • Join • K ≪ Geometry	Activate) ➡ = = = = = = = = = = = = = = = = = =	View Measure	Create					
Properties Section Section Control Con	X Condition Level	G DD) (₫) Upper linelye Level	> Section 3	○ Section 4		् स ्	Project Dimeser - Davis - O, Views (a) - Celling Plans - Celling Plans - Celling Plans - Detail 3 - Detail 3 - Detail 3 - Detail 3 - Ploor Salo R - Rior Caso - Section 1 - Section 2 - Se	laher X sing Elevation ing Section) R eninforcement eninfo
Click to select, TAB for alternates, CT	RL adds, SHIFT unselects.		<u>a</u>		- 🖉 10 🔚 🕅 Ma	ain Model		12	🖧 🛼 🕼 🏷 O 🖓 🕫	j.
	Figur	re 4.85 T	endon I	Position	in the	Middle	of the S _l	pan		

4.4.2. Modeling Reinforcement of Bridge Components

1. On the View Tab, click Section, on Properties select Detail View, and create a cut line on the object to be made of reinforcement, for example on the abutment as shown in the figure below.

Figure 4 86 View – Section – Detail View

2. The next step is to right-click on the Detail View and click Go to View so that a display of object pieces will appear as shown in the figure below.

3. To make a concrete blanket arrangement, it can be done by clicking the Structure tab, clicking Cover, selecting the desired type of concrete cover, then clicking on the object that will be arranged for the concrete cover as shown in the figure below.

Figure 4.88 Structure – Cover

4. Next, make the shape of the reinforcement following the provisions that have been made previously by clicking the Structure Tab, and clicking Rebar, then several types of pre-existing reinforcement will appear as seen in the figure below.

5. If the shape of the reinforcement is not available in the existing type of reinforcement, then we can make the shape of the reinforcement according to our will by clicking Sketch, and then drawing the shape of the reinforcement that has been predetermined. If it is finished, then the thing that needs to be regulated is the number of rebars that exist with the distance of each of the rebars. This can be done by clicking on the previously made reinforcement, on the Layout Tab selecting Maximum Spacing, then setting the maximum spacing between the reinforcements as, for example, D19 150 reinforcement, then the distance between the reinforcements is 150 mm so that it can look like in the figure below.

		0	11000			100		
🞴 🖬 🖻 🗐 🖗	· · · · · -	17 = - 1	PA 0. • 📰 🖫	<u>B</u> . ≠	Autodesk Revit 2023 - Tugas Akhir - Jemba	an Beton Prategang - Section: Section 9	a 🖧 🚨 futureafe	ni · 🗑 🕐 💶 🗗 🗙
File Architecture	e Structure Steel	Precast Systems	Insert Annotate Analyze	Massing & Site	Collaborate View Manage Add-Ins	Enscape™ Modify		
Modify Select •	G Visibility/ Graph	ics [Show Hidder CR Remove Hide Cut Profile Cs	n Lines 🗇 Render den Lines 😵 Render in Cloud 🗟 Render Gallery ¥ Presentation	3D Section (Callout Plan Views - Drafting Views - Create	w	Title Block The evisions Revisions Guide Grid Composition	Close Tab Tile Inactive Views Views Windows
Descention		V (C) 10 Berry	wall and Dasharall Dainfas	A Casting 7	O 10 Diseas Deisforment O C	nine 10 Convit - Children 10 Con	and Count of Continue	V = Desired Deserves Torsee Mildie V
Section Building Section: Section 9 Graphics View Scale	Section V III Edit 1:100	Type *						→ 3D Pile → 3D Pilecap Reinforcer → 3D Pistessed Tendo → 3D Structure → 3D Wing Wall → 3D Wing Wall → 000 - Elevations (Building Eleva - East
Scale Value 1:	100	- 11						North
Display Model	Normai	- 1						Side View
Detail Level	Fine Shew Original	- 1			P U			South
Visibilitu/Graphics O	Show Original							West
visibility/Graphics O.	Edit							- Sections (Building Section
Bide at scalar spart	Edit				1 1			Disphram P
Plice at scales coars.	. 1:100	- 11						Eloor Stab Reinforcen
Discipline Discipline	Architectural	- 1			1 1			Floor Slab Reinforcen
Show Hidden Lines	By Discipline	- 1						Floor Slab Renforcem
Color Scheme								PCI-Girder R
Color scheme	<none></none>							Reinforcement Sidevi
Default Analysis Dis.	. None							Reinforcement Sidevi
Sun Path								Section 1
Externs	-							- Section 2
Crop Region Virible								Section 3
Annotation Cron		4			JU UL			Section 4
Far Clipping	Clip without line							Section 5
For Clip Offect	2048.0							Section 6
Scone Box	None							Section 7
Identity Data	Hone				r I I I			Section 8
View Template	Allonos							Section 9
View Name	Section 9							Section 10
Dependency	Independent							Section 10 Copy 1
Title on Sheet	mana premandi lik							Section 10 Copy 1 Co
me on sheet								Detail Views (Detail)
Properties help	App	ly 1:100	🖾 🗗 🍫 💁 🚅 🕼 🖓 V 🗔	n 14		-		
				D.				

Figure 4 90 PCI-Girder Reinforcement

Figure 4.93 Breast Wall and Back Wall Reinforcement

Figure 4.96 Wing Wall Reinforcement

6. For detailed drawings, it will be displayed in the attachment and the following is a complete view of the bridge structure that has been modeled using Autodesk Revit 2022 with the reinforcement that exists on the bridge component as shown in the Figure below.

Figure 4.98 Bridge Reinforcement

CHAPTER V CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

After researching the planning and design of pre-stressed concrete bridges with the application of the Building Information Modeling (BIM) concept to assist in the calculations, design process, and modeling, the conclusions that can be taken from this research are,

- 1. This research successfully designed a prestressed concrete bridge that can withstand various types of loads that may work, both dead loads, live loads, and other environmental loads. The planning process is carried out by considering structural and safety factors, resulting in a design that can meet the technical standards required to maintain the integrity and safety of the bridge during its service life. The right selection of materials and the efficient design of structural elements also contribute to the stability and durability of the bridge.
- 2. The deflection that occurs on the bridge (δ_{max}) based on calculations in Midas Civil 2023 must be smaller than the allowable deflection (L/360) with the following values,

6

$$\delta_{max} \le L/360$$

1.361 mm ≤ 111.111 mm

So the bridge structure can withstand all the loads without experiencing too large deflection.

- 3. The design of prestressed concrete uses a PCI-Girder type 2100 mm with 57 Strands and 3 Tendons, where each Tendon has 19 Strands
- 4. From the results of the planning and design of the prestressed concrete bridge, this research succeeded in producing a detailed engineering design (DED) that covers all technical and geometric aspects of the bridge structure will be presented in the attachment. The resulting DED includes dimensional specifications of structural elements, material selection, and clear structural detailing in 2D and 3D form. This design is ready to be used as a guide in the implementation of bridge construction in the field. A complete and accurate DED will also minimize the potential for errors during execution, thereby improving the quality and efficiency of construction.

- 5. The application of the BIM concept in the planning and design of prestressed concrete bridges provides convenience in calculating and modeling structures more efficiently and accurately. With BIM, any changes to the design can be instantly and automatically updated across the entire model, reducing the potential for calculation and modeling errors.
- 6. The application of BIM in the planning and design of prestressed concrete bridges provides some significant advantages, including:
 - BIM allows for more accurate calculations and more efficient modeling, reducing the possibility of design errors and structural miscalculations.
 - BIM allows designers to analyze various design scenarios and select the optimal solution. For example, in the planning of prestressed concrete bridges, BIM can be used to optimize the dimensions of structural elements, material types, and prestressed cable configurations, so that material efficiency and structural strength can be better achieved.
 - With BIM, load simulation and structural response to dynamic or static loads can be done better. This is very important in the planning of a prestressed concrete bridge that must be able to withstand the load from vehicles, wind, and other loads.
 - BIM technology provides the ability to view 3D models of the entire bridge, which makes it easier to understand and communicate between the design team and other stakeholders.
- 7. The implementation of BIM also has several challenges and advantages, such as:
 - BIM implementation requires a considerable initial investment, both in terms of software, hardware, and training of human resources who will operate the BIM system.
 - The use of BIM requires higher technical expertise compared to conventional methods. Therefore, it takes a very long time to learn the BIM-based software.
 - If the BIM-based software used comes from a different development, the data transfer cannot be done directly. An add-on tool is needed to do just that, or the data transfer is done manually.

5.2 **RECOMMENDATION**

Suggestions that can be given for further research related to this research include the following.

- 1. Future research can explore variations in the use of materials in prestressed concrete bridge components, such as the quality of concrete used or prestressing systems with other cable materials.
- 2. To extend this research, it is recommended to design prestressed concrete bridges with longer spans. or across areas with more complex conditions.
- It is recommended to explore other types of prestressed concrete girders, such as T-Girders or U-Girders, to evaluate their efficiency and suitability for different bridge designs and conditions.
- 4. Future research can investigate the design of other bridge types, such as cable-stayed bridges, steel composite bridges, or suspension bridges.

BIBLIOGRAPHY

- Ramadhan, Kevin. (2022). Perencanaan dan Perancangan (3D,4D,5D) Jembatan Rangka Baja dengan Penerapan Konsep Building Information Modelling (BIM). Padang: Jurusan Teknik Sipil - Fakultas Teknik Universitas Andalas.
- Lin, T.Y., & Bruns, H. (1981). Design of prestressed concrete structures. 3rd ed. New York: Wiley.

Naaman, S. A. (2004). Prestressed Concrete: Analysis and Design. John Wiley & Sons.

Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors (2nd Edition). Wiley.

Konsensus Beton Indonesia. 1998. Konsensus Pedoman Beton. Jakarta: Himpunan Beton Indonesia (HBI).

- Struyk, H. J., & Veen, V. D. (1995). Jembatan. Jakarta: PT. Pradnya Paramita.
- Frapansi, Sri & Fahrizal Zulkarnaik. (2021). Dasar-Dasar Desain Dan Analisa Beton Prategang. Medan : UMSUPress.
- Rangan, Parea Rusan. (2019). Perencanaan Jembatan Sungai Mappajang Dengan Jembatan Beton Prategang. Toraja: Journal Dynamic Saint.
- Rizal Pamungkas. (2017). Perencanaan Jembatan Jabungan Kota Semarang Provinsi Jawa Tengah. Semarang: Universitas Semarang.
- Iqbal, Firdaus. (2019). Perencanaan Penggantian Jembatan Bringin Kota Semarang. Semarang: Universitas Semarang.
- Autodesk. (2023). *Revit 2023 Help.* Autodesk. Retrieved from <u>https://help.autodesk.com/view/RVT/2023/ENU/?guid=GUID-7793667D-5657-4382-9BEC-</u> <u>F7CB6AC8F53E</u>
- MIDAS. (n.d.). *MIDAS Civil 910 User Manual*. MIDAS Information Technology. Retrieved from <u>http://manual.midasuser.com/EN Common/Civil/910/index.htm</u>
- Badan Standardisasi Nasional (BSN). (2016). SNI 1725:2016 *Pembebanan untuk Jembatan*. Jakarta: Badan Standardisasi Nasional (BSN).
- Badan Standardisasi Nasional (BSN). (2016). SNI 2833:2016 Perencanaan Jembatan Terhadap Beban Gempa. Jakarta: Badan Standardisasi Nasional (BSN).
- Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR). (2021). Panduan Praktis Perencanaan Teknis Jembatan. No. 02/M/BM/2021.
- Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR). (2008). Manual Perencanaan Struktur Beton Bertulang untuk Jembatan. No. 009/BM/2008.
- Departemen Pekerjaan Umum. (2004). *RSNI T-12-2004 Standar Perencanaan Struktur Beton untuk Jembatan*. Jakarta: Departemen Pekerjaan Umum.
- Badan Standardisasi Nasional (BSN). (2019). SNI 2847:2019 Persyaratan Beton Struktural untuk Bangunan Gedung. Jakarta: Badan Standardisasi Nasional (BSN).
- Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR). (2023). *Permen PUPR No. 5 Tahun 2023 tentang Persyaratan Teknis Jalan dan Perencanaan Teknis Jalan*. Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR).
- Badan Standardisasi Nasional (BSN). (2017). *SNI 8460:2017 Persyaratan Perancangan Geoteknik*. Jakarta: Badan Standardisasi Nasional (BSN).

- Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR). (2022). *Permen PUPR No. 10 Tahun 2022 tentang Penyelenggaraan Keamanan Jembatan dan Terowongan Jalan*. Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR).
- American Association of State Highway and Transportation Officials (AASHTO). (2020). LRFD Bridge Design Specifications. 9th ed. Washington, D.C.: AASHTO.
- American Concrete Institute (ACI). (2014). Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14). Farmington Hills, MI: American Concrete Institute.
- Federal Highway Administration (FHWA). (2005). FHWA NHI-05-042 Design and Construction of Driven Pile Foundation. Washington, D.C.: Federal Highway Administration.
- British Standard Institution (BSI). (1992). BMS 92 Bridge Design Code Vol. 1 and 2. London: British Standard Institution.
- British Standard Institution (BSI). (1992). BMS 92 Bridge Manual Design Vol. 1 and 2. London: British Standard Institution.

ATTACHMENT

ATTACHMENT I

MANUAL CALCULATION

ATTACHMENT II

STRUCTURAL ANALYSIS OF THE BRIDGE SUPERSTRUCTURE USING MIDAS CIVIL 2022

ATTACHMENT III

STRUCTURAL ANALYSIS OF THE BRIDGE SUBSTRUCTURE AND FOUNDATION USING MIDAS CIVIL 2022

ATTACHMENT IV

STRUCTURE DRAWING

ATTACHMENT V

DETAIL STRUCTURE DRAWING

Bridge General Data				
	Dimension of Bridge			
Length of Bridge	:L =	40.00 m		
Width of Bridge	: B _L =	10.00 m		
Width of Bridge Lines	: B _{BL} =	2 x 3.5 m		
Thickness of Wearing Surface	: t _a =	0.05 m		
Width of Sidewalk	: b _s =	1.00 m		
Thickness of Sidewalk	: t _s =	0.25 m		
Width of Berrier	: b _b =	0.50 m		
Heigth of Berrier	: h _b =	1.25 m		

	Data for Bridge Structure								
	Data for Bridge Superstructure								
1.	1. Concrate Girder Material Data								
	Compressive Strength of Concrete at 28 Days	: f cg	=	50 MPa					
	Compressive Strength of Concrete During Stressing	: f cig	=	40 MPa					
	Modulus of Elasticity of Concrete at 28 Days	: Ecg	$=$ [4700 $\sqrt{\text{fcg}}$]	33234.02 MPa					
	Modulus of Elastisity of Concrete During Stressing	: Ecig	= $[4700 \sqrt{\text{fcig}}]$	29725.41 MPa					
	Specific Gravity of Concrete	: γc	=	25 kN/m^3					
2.	Bridge Floor Slab Data								
	Compressive Strength of Concrete at 28 Days	: f cd	=	35 MPa					
	Compressive Strength of Concrete When First Loaded	: f`cid	=	30 MPa					
	Modulus of Elasticity of Concrete at 28 Days	: Ecd	$= [4700 \sqrt{fd}]$	27805.57 MPa					
	Modulus of Elasticity of Concrete When First Loaded	: Ecid	$=$ [4700 $\sqrt{\text{fid}}$]	25742.96 MPa					
	Specific Gravity of Concrete	: γc	=	25 kN/m^3					
3.	Pre-Stressed Steel Data			T					
	Type of Strand	: Seven	Wire Strand, Low Relaxation						
	Pre-Stressed Steel Grade	: ASTM	416						
	Diameter of Strand	: Dps	=	12.70 mm					
	Cross-Sectional Area of Strand	: Aps	=	98.71 mm ²					
	Tensile Strength of Pre-Stressed Steel	: fpu	=	1860 MPa					
	Yield Strength of Pre-Stressed Steel	: fpy	= [0.9 fpu]	1674 MPa					
	Modulus of Elasticity of Pre-Stressed Steel	: Eps	=	197000 MPa					
	Jacking Force	: fpbt	= [0.75 fpu]	1395 MPa					
				<u> </u>					
4.	Steel Reinforcement Data		•	1					
	Steel Reinforcement Grade (for $D \ge 13 \text{ mm}$)	: BJTD	42						
	Yield Strength of Reinforcement Steel	: fy	=	420 MPa					
	Tensile Strength of Reinforcement Steel	: fu	=	525 MPa					
	Modulus of Elasticity of Reinforcement Steel	: Es	=	200000 MPa					
	Steel Reinforcement Grade (for D < 13 mm)	BJTP	24						
	Yield Strength of Reinforcement Steel	: fy	=	240 MPa					
	Tensile Strength of Reinforcement Steel	: fu	=	390 MPa					
	Modulus of Elasticity of Reinforcement Steel	: Es	=	200000 MPa					

4. Elastomeric Bearing Pad Data				
Length of Elastomer Bearing	: L			600 mm
Width of Elastomer Bearing	: W	=		600 mm
Thickness of Elastomer Bearing	: H	=		97 mm
Thickness Upper and Lower Elastromer Bearing	: Hc			6 mm
Thickness of One Elastomer Layer	: Hri	=		15 mm
Number of Elastomer Layer	: Nri			4
Thickness of One Steel Reinforcement Layer	: Hs			5 mm
Number of Steel Reinforcement	: Ns	=		5
Shape Factor	: S	=		10
Compressive Stiffness	: SDc	=		1.56E+06 kN/m
Shear Stiffness	: SDs			3.85E+03 kN/m
Allowable Compressive Strength	: Pn			2930 kN
Dat	a for Bridge S	ubstructure		
1. Soil Data				
Specific Gravity of Soil	: Y _{soil}	=		18 kN/m ³
Angle of Internal Friction	: φ	=		30 °
Cohesion of Soil	: C	=		1 kN/m^2
2 Material Data				
2. Material Data	<i></i>	_		20.255
Compressive Strength of Concrete	: f'c	=		30 MPa
Modulus of Elasticity of Concrete	: Es	$= \left[\frac{4}{00} \sqrt{1} c \right]$		25742.96 MPa
Specific Gravity of Concrete	: yc	=		24 kN/m ³
Stad Dain formant Condu	. DITD 4	120		
Steel Reinforcement Grade	: bjiD4			420 MD
Yield Strength of Rainforcement Steel	: iy	=		420 MPa
Tensile Strength of Rainforcement Steel	: tu	=		525 MPa
Modulus of Flasticity of Pointormont Stool	• •	=		200000 MPa
Would's of Elasticity of Kamforment Steel	: ES			200000 1.11 a
	Data for Four	ndation		200000 111 4
1. N-SPT Data of Soil	Data for Four	ndation		
1. N-SPT Data of Soil	Data for Four	ndation		
I. N-SPT Data of Soil	Data for Four	ndation	NSPT	
I. N-SPT Data of Soil	Data for Four		NSPT 20 30 40 50 60	
I. N-SPT Data of Soil	Tound Elevation	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	NSPT 20 30 40 50 60	,
1. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ kN}$	The second elevation $\phi = 32^{\circ}$	$\frac{1}{2}$	NSPT 20 30 40 50 60)
I. N-SPT Data of Soil Gramma from Loose Sand $\gamma = 18 \text{ kN}$	To the second elevation $\phi = 32^{\circ}$	$\frac{1}{2}$	NSPT 20 30 40 50 60)
I. N-SPT Data of Soil Gr 6 m Loose Sand γ = 18 kN	Tound Elevation $f/m^3 \qquad \phi = 32^\circ$	ndation	NSPT 20 30 40 50 60	
I. N-SPT Data of Soil 6 m Loose Sand γ = 18 kN	Tound Elevation $f/m^3 \qquad \phi = 32^\circ$	1dation	NSPT 20 30 40 50 60	
I. N-SPT Data of Soil 6 m Loose Sand γ = 18 kN	Tound Elevation $f/m^3 \qquad \phi = 32^\circ$	$ \begin{array}{c} $	NSPT 20 30 40 50 60)
I. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ km}$	Touring Elevation $f/m^3 \qquad \phi = 32^\circ$	1dation 0 10 2 4 0 10 2 4 0 10 2 4 10 12 14 16 0 16	NSPT 20 30 40 50 60)
I. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$	To the formula for the formula formula for the formula formul	ndation	NSPT 20 30 40 50 60	,
I. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$	$b = 32^{\circ}$	$\begin{array}{c c} & & & & & & \\ & & & &$	NSPT 20 30 40 50 60	
I. N-SPT Data of Soil Gr 6 m Loose Sand $\gamma = 18 \text{ km}$ 24 m Dense Sand $\gamma = 22 \text{ km}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	ndation	NSPT 20 30 40 50 60	
I. N-SPT Data of Soil Gramma (Gramma) 6 m Loose Sand $\gamma = 18 \text{ km}$ 24 m Dense Sand $\gamma = 22 \text{ km}$	Tound Elevation $f/m^3 \qquad \phi = 32^\circ$	1dation 0 10 2 4 0 10 2 4 10 12 4 14 16 18 20 22 24 26 14 20 22 24 26 20 22 24 26 20 20 20 20 20 20 20 20 20 20	NSPT 20 30 40 50 60	
I. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$	The second Elevation $f/m^3 \qquad \phi = 32^\circ$	0 10 0 10 2 2 4 2 5 6 8 10 12 4 14 16 18 20 22 24 24 26 28 30	NSPT 20 30 40 50 60)
I. N-SPT Data of Soil Gr 6 m Loose Sand $\gamma = 18 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$	Data for Four cound Elevation $/m^3 \phi = 32^\circ$	$\begin{array}{c} \begin{array}{c} & & & & & \\ & $	NSPT 20 30 40 50 60	
1. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$	Data for Four round Elevation $/m^3 \qquad \phi = 32^\circ$	ndation	NSPT 20 30 40 50 60	
1. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 18 \text{ kN}$	$b = 40^{\circ}$	ndation	NSPT 20 30 40 50 60	30 MPa
1. N-SPT Data of Soil 6 m Loose Sand $\gamma = 18 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 22 \text{ kN}$ 24 m Dense Sand $\gamma = 100 \text{ km}$ 25 m Dense Sand $\gamma = 100 \text{ km}$ 26 m Dense Sand $\gamma = 100 \text{ km}$ 26 m Dense Sand $\gamma = 100 \text{ km}$ 26 m Dense Sand $\gamma = 100 \text{ km}$ 26 m Dense Sand $\gamma = 100 \text{ km}$ 27 m Dense Sand $\gamma = 100 \text{ km}$ 28 m Dense Sand $\gamma = 100 \text{ km}$ 29 m Dense Sand $\gamma = 100 \text{ km}$ 20 m Dense Sand $\gamma = 100 \text{ km}$ 20 m Dense Sand $\gamma = 100 \text{ km}$ 20 m Dense Sand $\gamma = 100 \text{ km}$ 20 m Dense Sand $\gamma = 100 \text{ km}$ 20 m Dense Sand $\gamma = 100 \text{ km}$ 21 m Dense Sand $\gamma = 100 \text{ km}$ 22 m Dense Sand $\gamma = 100 \text{ km}$ 20 m Dense Sand $\gamma = 100 \text{ km}$ 21 m Dense Sand $\gamma = 100 \text{ km}$ 22 m Dense Sand $\gamma = 100 \text{ km}$ 23 m Dense Sand $\gamma = 100 \text{ km}$	$b = 40^{\circ}$	ndation	NSPT 20 30 40 50 60	30 MPa 25742.96 MPa
1. N-SPT Data of Soil 6 m 6 m Loose Sand γ = 18 kN - 24 m Dense Sand γ = 22 kN - 24 m Dense Sand γ = 22 kN - 2. Material Data of the Foundation Compressive Strength of Concrate Modulus of Elasticity of Concrate Specific Grafity of Concrate	Data for Four round Elevation $\sqrt{m^3} \phi = 32^\circ$ $1/m^3 \phi = 40^\circ$ $\vdots f^*c$ $\vdots Es$ $\vdots \gamma c$	$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & \\ & & $	NSPT 20 30 40 50 60	30 MPa 25742.96 MPa 24 kN/m ³
1. N-SPT Data of Soil 6 m Loose Sand γ = 18 kN 24 m Dense Sand γ = 22 kN 25 m Dense Sand γ = 22 kN 26 m Dense Sand γ = 22 kN 27 m Dense Sand γ = 22 kN 28 m Dense Sand γ = 22 kN 29 m Dense Sand γ = 22 kN 20 m Dense Sand γ = 22 kN 20 m Dense Sand γ = 22 kN 21 m Dense Sand γ = 22 kN 22 m Dense Sand γ = 22 kN 23 m Dense Sand γ = 22 kN 3 Dimension of the Foundation Dense Sand γ = 22 kN	$b_{a} = 40^{\circ}$	ndation	NSPT 20 30 40 50 60	30 MPa 25742.96 MPa 24 kN/m ³
I. N-SPT Data of Soil 6 m Loose Sand γ = 18 kN 6 m Loose Sand γ = 18 kN 24 m Dense Sand γ = 22 kN 25 m Dense Sand γ = 22 kN 26 m Dense Sand γ = 22 kN 27 m Dense Sand γ = 22 kN 28 m Dense Sand γ = 22 kN 29 m Dense Sand γ = 22 kN 20 m Dense Sand γ = 22 kN 21 m Dense Sand γ = 22 kN 22 m Dense Sand γ = 22 kN 20 m Dense Sand γ = 22 kN 21 m Dense Sand γ = 22 kN 22 m Dense Sand γ = 22 kN 20 m Dense Sand γ = 22 kN 21 m Dense Sand γ = 22 kN 22 m Dense Sand γ = 22 kN 23 m Dense Sand γ = 22 kN 24 m Dense Sand γ = 22 kN 25 m Dense Sand γ = 22 kN 26 m Dense Sand γ = 22 kN 27 m Dense Sand γ = 22 kN 28 m Dense Sand γ = 22 kN 29 m	$b = 40^{\circ}$	ndation	NSPT 20 30 40 50 60	30 MPa 25742.96 MPa 24 kN/m ³
I. N-SPT Data of Soil 6 m Loose Sand γ = 18 kN 6 m Loose Sand γ = 18 kN 24 m Dense Sand γ = 22 kN 25 m Compressive Strength of Concrate Modulus of Elasticity of Concrate Specific Grafity of Concrate 3. Dimension of the Foundation Diameter of Foundation Diameter of Foundation Diameter of Foundation	$b = 40^{\circ}$	$ \begin{array}{c} $	NSPT 20 30 40 50 60	30 MPa 25742.96 MPa 24 kN/m ³ 0.80 m

Loading of Bridge Superstucture						
1. Dead Load from Self Weight (MS)						
Load caused by the weight of the bridge structure itse						
2. Additional Dead Load From Berrier and Sidewalk (M	[A ₁)					
Material of Berrier and Sidewalk	: Concra	te				
Specify Gravity of Material	: yc	=	24 kN/m^3			
Cross-Sectional Area of Berrier and Sidewalk	: Aps	= [Approximate calculation]	0.65 m^2			
	. 53					
Load From Berrier and Sidewalk	: L ₁	= $[\gamma c * A_{BS}]$	15.6 kN/m			
3. Additional Dead Load From Wearing Surface (MA ₂)						
Material of Wearing Surface	: Asphalt	:				
Specify Gravity of Material	: γ a	=	22 kN/m^3			
Thickness of Wearing Surface	: ta	= [Initial Data]	0.05 m			
Load From Wearing Surface	: L ₂	$= [\gamma c * ta]$	1.1 kN/m ²			
4. Line Load (TD)						
8.3.1 Intensitas beban "D" Beban terbagi rata (BTR) mempunya panjang total yang dibebani <i>L</i> yaitu se	ai intensitas <i>q</i> eperti berikut :	kP _a dengan besaran <i>q</i> tergantung pada				
like $l < 30 \text{ m} + \alpha = 9.0 \text{ kPa}$						
JIKA L 30 111 . Y = 3,0 KFA						
Jika $L > 30m$: $q = 9,0 \left(0,5 + \frac{15}{L} \right) kPa$ (28)						
Keterangan: q adalah intensitas beban terbag L adalah panjang total jembatan						
Arah lalu lintas						
Gamb	oar 24 - Bebar	ı lajur "D"				
Beban garis terpusat (BGT) dengan intensitas ρ kN/m harus ditempatkan tegak lurus terhadap arah lalu lintas pada jembatan. Besarnya intensitas ρ adalah 49,0 kN/m. Untuk mendapatkan momen lentur negatif maksimum pada jembatan menerus, BGT kedua yang identik harus ditempatkan pada posisi dalam arah melintang jembatan pada bentang lainnya.						
Length of Bridge	: L	= [Initial Data]	40.00 m			
Width of One Bridge Lines	: B _{BL}	= [Initial Data]	3.50 m			
Uniformly Distributed Load	: BTR'	= [9*(0.5 + (15/L))]	7.875 kN/m ²			
Concentrated Line Load	: BGT'	= [SNI 1725-2016]	49 kN/m			
Dynamic Load Factor for Line Load	FBD _{TD}	= [SNI 1725-2016]	1.4			
Uniformly Distributed Load Inputted	. р тр'	$= \begin{bmatrix} BTR * B_{rr} * FBD_{rr} \end{bmatrix}$	28 580 IN			
Concentrated Line Load Inputted	, DIK , RCT	$= \begin{bmatrix} BGT * B_{DT} * FBD_{TC} \end{bmatrix}$	240 10 LN			
Concentrated Eme Load Inputted	, DGI	L DOL DBL IDDBGT]	240.10 KIN			

5. Truck Load (TD) Beban truk "T" (TT) 8.4 Selain beban "D", terdapat beban lalu lintas lainnya yaitu beban truk "T". Beban truk "T" tidak dapat digunakan bersamaan dengan beban "D". Beban truk dapat digunakan untuk perhitungan struktur lantai. Adapun faktor beban untuk beban "T" seperti terlihat pada Tabel 13. \odot - 1 75 m (4 - 9) m - 2,75 m 225 kM 225 kN 750 mm 112,5 kN 750 mm 1 [112,5 kN □ 25 kN ___ |___ 250 mm 250 250 mm 750 mm 112,5 kN 750 mm 112,5 kN - 25 kN **Dynamic Load Factor for Truck Load** : FBD_{TT} 1.3 6. Pedestrian Load (TP) 8.9 Pembebanan untuk pejalan kaki (TP) Semua komponen trotoar yang lebih lebar dari 600 mm harus direncanakan untuk memikul beban pejalan kaki dengan intensitas 5 kPa dan dianggap bekerja secara bersamaan dengan beban kendaraanpada masing-masing lajur kendaraan. Jika trotoar dapat dinaiki maka beban pejalan kaki tidak perlu dianggap bekerja secara bersamaan dengan beban kendaraan. Jika ada kemungkinan trotoar berubah fungsi di masa depan menjadi lajur kendaraan, maka beban hidup kendaraan harus diterapkan pada jarak 250 mm dari tepi dalam parapet untuk perencanaan komponen jembatan lainnya. Dalam hal ini, faktor beban dinamis tidak perlu dipertimbangkan. : W_{TP} Pedestian Load 5.00 kN/m^2 Width of Sidewalk = [Initial Data] 1.00 m : b_s **Distance Between Nodes** : Dn = [Midas Modeling] 2.00 m Point Load on the Central Node : P1 = $[W_{TP} * b_s * Dn]$ 10 kN Point Load on the Edge Node : P2 = [0.5 * P1] 5 kN 7. Wind Load on Structure (EWL) **Upstream Surface Conditions** : Open Field Wind Friction Speed : Vo = [SNI 1725-2016] 13.2 km/H = [SNI 1725-2016] 70 **mm** Length of Friction Upstream of the Bridge : Zo **Elevation of Structures above Ground** : Z = [Input] 9000 mm Wind Speed Design of 10000 mm above Ground $: V_B$ = [SNI 1725-2016] 90 Km/H Wind Speed at an Elevation of 10000 mm above Ground = [SNI 1725-2016] 90 Km/H : V₁₀ **Base Wind Preasure** : **P**_B = [SNI 1725-2016] 0.0024 MPa = $[2.5 * Vo * (V_{10}/V_B) * ln(Z/Zo)]$ Wind Speed Design : V_{DZ} 160.264 Km/H : **EWL** = $[P_{B} * (V_{DZ} / V_{B})^{2}]$ Wind Load on Structures 7.610 Km/H

📜 APLIKASI LINI		TAUTAN LITERATUR 🛩 🛛 U	MPAN BALIK afdhil LOG OUT
Klasifikasi Situs dan Spektrum Respons Desain			
NAMA PROFIL			
TAHUN PETA 2017			
LONGITUDE 100.411 LATITUDE -0.900			
Profil Tanah Percepatan Puncak dan Spektrum Respons di Batuan Dasar Analisis Minimum Pengaruh Gempa			
a cetak laporan	Percepatan Puncak dan Spektrun	n Respons di Batuan Dasar	
	PGA 0.476	S ₅ 1.073 S ₁	0.454
12	Spektrum Respons Desain di Pen	mukaan Tanah	
	Variabel	T (darik)	Sa (d)
	Kelas Situs: SB (Batuan)	1 (uniting	(g) 60.
₩ 0.8 -	Kelas Situs: SC (Tanah Kera)	5)	
	③ Kelas Situs: SD (Tanah Seda	ing)	
₩ 0.6 ·	As	0	0.487
	TO	0.122	1.149
5 0.4	SD5	0.2	1.149
setta	Ts	0.611	1.149
¥ 0.2	15+0.1	0.7	1.003
	15+0.2 Tex0.2	0.8	0.878
0	Ts+0.4	1.0	0.702
0 0.5 1 1.5 2 2.5 3 3.5 4 Beriodo Tm (detik)	SD1	1	0.702
CD (Datum) - CC (Tanah Keran) - CD (Tanah Gerano) - SC (Tanah Lunak)	Ts+0.5	1.1	0.639
2022 © Copyright	Direktorat Bina Teknik Jalan dan Jembatan		×
Ground Acceleration	: GPA = [Ap]	likasi Lini J	0.47
ral Response Acceleration at Short Period	$: S_s = [Ap]$	likasi Lini]	1.07
<u>.</u>		-	

Bridge Superstucture Analysis with Midas Civil 2022

Approximate Prestressing Force and Determination of The Number of Tendon					
1. PCI-Girder Data (Non-Composite Girder)					
Cross-Sectional Area	: Ag	= [Calculation Result of Midas CIvil 2022]	835250 mm ²		
Momen of Inertia	: Ig	= [Calculation Result of Midas CIvil 2022]	4.40E+11 mm ⁴		
Hight of Girder	: hg	= [Calculation Result of Midas CIvil 2022]	2100 mm		
Distance from the Neutral Axis to the Bottom Fiber	: yb	= [Calculation Result of Midas CIvil 2022]	1034.164 mm		
Distance from the Neutral Axis to the Top Fiber	: ya	= [hg - yb]	1065.836 mm		
Section Modulus of the Bottom Fiber	: Sb	= [Ig / yb]	4.252E+08 mm ³		
Section Modulus of the Top Fiber	: Sa	= [Ig / ya]	4.125E+08 mm ³		
2. Tensile Stress at Bottom Fiber at Combination of Serv	ice III (Calc	ulation Result of Midas CIvil 2022)			
Tensile Stress at Bottom Fiber	: f _{bserv}	= [Calculation Result of Midas CIvil 2022]	20.752 MPa		
3. Calculating the Active Prestressed Force					
Allowable Stress Under Service Load Conditions	: f _{allserv}	= $[0.5 \sqrt{fc'}]$	3.536 MPa		
Tensile Stress Required at The Bottom Fiber	: fpb	= [fallserv - fbserv]	17.216 MPa		
Distance From The Center of Prestress to	: vbs	= [0.1 hg]	210 mm		
The Bottom Fiber			004.164		
Eccentricity at The Mid-Span	: e _c	$= [yb - ybs]$ $= [(f_{r}h^*A_{r}^*Sh)/(Sh + a_{r}^*A_{r})]$	824.164 mm		
Active Prestressed Force	: Pe	$- [(1p0^{\circ}Ag^{\circ}S0)/(S0 + e_{c}^{\circ}Ag^{\circ}]$	5490.584 k N		
4. Counting the Number of Strands			20.04		
Loss of Pretension Force (T.Y Lin)	: losses		20 %		
Final Prestressing Force per Strand	: P _{e_strand}	= [Aps.fpbt (1 - losses]	110.160 kN		
Number of Strands Required	: N _{str_req}	= $[Pe / Pe_strand]$	50 Strand		
Number of Strands Used	: N _{str}	\geq [Nstr_req]	57 Strand		
Number of Tendon Used	: N	=	3 Tendon		

Inspection of Prestressed Concrete Designs Using Midas Civil 2022

Calculation of Bridge Superstructure Reinforcement						
Reinforcement Calculation of Prestressed Girder (PCI-Girder)						
1. Flexure Reinforcement of Edge PCI-Girder (Just Need Minimum Reinforcement)						
Diameter of Rebar	: Ds	=	13 mm			
Area of Rebar	: As	$= [(1/4) \pi \text{ Ds}^2]$	132.732 mm ²			
Cross-Sectional Area	: A _g	= [Midas Civil Calculation]	1320300 mm ²			
Reinforcement Area Required	: A _{s_req}	= [0.4% A _g]	5281.200 mm ²			
Number of Rebar Required	: N	= $[A_{s_req} / As]$	39.788			
Number of Rebar Used	:	40D13				
1. Flexure Reinforcement of Middle PCI-Girder (Just No	eed Minimu	m Reinforcement)				
Diameter of Rebar	: Ds	=	13 mm			
Area of Rebar	: As	$= [(1/4) \pi \text{ Ds}^2]$	132.732 mm ²			
Cross-Sectional Area	: A _g	= [Midas Civil Calculation]	825550 mm ²			
Reinforcement Area	: A _{s_req}	$= [0.4\% A_g]$	3302.200 mm ²			
Number of Rebar Required	: N	= $[A_{s_req} / As]$	24.879 buah			
Number of Rebar Used	:	26D13				
2. Shear Reinforcement of Prestressed Beam (Trial and I	Error in Mie	das Civil 2022)				
Diameter of Rebar	: D _v	=	13 mm			
Number of Rebar	: n _v	=	2			
Area of Shear Reinforcement	: A _v	= $[(1/4) * \pi * d_v^2 * n_v]$	265.465 mm ²			
Specing of Field Reinforcement	:	D13-200				
Specing of Support Reinforcement	:	D13-100				

Reinforcement Calculation of Bridge Floor Slab						
1. General Data of Floor Slabs						
Effective Width of Floor Slabs	: b	= [Initial Data]	2000 mm			
Thickness of Floor Slab	: ts	= [Initial Data]	250.000 mm			
Concrete Grade	: fc'	= [Initial Data]	30.000 MPa			
Yield Strength of Rainforcement Steel ($D \ge 13$)	: fy	= [Initial Data]	420 MPa			
Yield Strength of Rainforcement Steel (D < 13)	: fy	= [Initial Data]	240 MPa			
Concrete Cover	: cd	= [Input]	30 mm			
2. Flexure Reinforcement of Floor Slab						
Diameter of Rebar	: Df	= [Input]	16 mm			
Flexural Reduction Factor	÷φf	=	0.9			
Momen Ultimate	: Mu	= [Midas Civil Calculation]	138.005 kN.m			
Effective Thickness of the Floor Slab	: de	= [h - dc -0.5D]	212 mm			
Concrete Stress Distribution Shape Factor	:β ₁	= [fc' > 30 MPa]	0.85			
Reinforcement Ratio in Balance Condition	: p _b	= [$\beta 1^* 0.85 * fc' / fy * 600 / (600 + fy)]$	0.03035714 kN.m			
Maximum Moment Resistance Factor	: Rnmax	= [$0.75*\rho b*fy*(1-\frac{1}{2}*0.75*\rho b*fy/(0.85*fc')$]	7.76953125 kN/m ²			
Nominal Moment (Planned Moment)	: Mn	= $[Mu / \phi]$	153.339 mm ²			
Moment Resistance Factor	: Rn	= $[Mn * 10^6 / (b * de^2)]$	1.706 kN/m ²			
		Rn < Rnmax	OK!			
Required Reinforcement Ratios	: p	= $\left[0.85 \text{*fc'/fy}(1 - \sqrt{1 - 2 \text{* Rn/(} 0.85 \text{*fc'})}) \right]$	0.0042			
Minimum Reinforcement Ratio	: ρ_{min}	= [1.4 / fy]	0.0033			
Reinforcement Ratio Used	: p	= [min (ρ , ρ min)]	0.0042			
Required Reinforcement Area	: As	= [$\rho * b * de$]	1784 mm ²			
Maximum Spacing of Flexure Reinforcement	: Smax	= [(1/4) * π * D ² * b / As]	225 mm			
Spacing of Flexure Reinforcement Used	: S	=	100 mm			
Longitudinal Flexure Reinforcement Used	:	D16 - 100				
3. Transverse Reinforcement of Floor Slab						
Diameter of Rebar	: Dv	= [Input]	13 mm			
Reinforcement Percentage	: Pt	= [Min (110/ \sqrt{S} , 67%]	67 %			
Minimum Area of Transverse Reinforcement	: As_req	$= [(As_req * Pt)]$	1195.245 mm ²			
Maximum Spacing of Transverse Reinforcement	: Smax	= [(b * (1/4) * π * D ²)/ As_req]	222.101 mm			
Spacing of Flexure Reinforcement Used	: S		100 mm			
Specing of Transverse Reinforcement Used	:	D13 - 100				

Reinforcement Calculation of Bridge Diaphragm						
1. General Data of Diaphragm						
Height of Diaphragm	: h	= [Initial Data]	1280 mm			
Thickness of Diaphragm	: t	= [Initial Data]	200			
Concrete Grade	: fc'	= [Initial Data]	30 MPa			
Yield Strength of Rainforcement Steel ($D \ge 13$)	: fy	= [Initial Data]	420 MPa			
Yield Strength of Rainforcement Steel (D < 13)	: fy	= [Initial Data]	240 MPa			
Concrete Cover	: dc	= [Input]	30 mm			
2. Flexure Reinforcement of Diaphragm			1			
Diameter of Rebar	: Df	= [Input]	13 mm			
Flexural Reduction Factor	÷φf	= [SNI 2847-2019]	0.90			
Ultimate Moment	: Mu	= [Midas Civil Calculation]	4.56 kN.m			
Effective Thickness of the Floor Slab	: de	= [t - dc - 0.5Df]	163.5 mm			
Concrete Stress Distribution Shape Factor	:β ₁	= [fc' > 30 MPa]	0.85			
Reinforcement Ratio in Balance Condition	: p _b	= [$\beta1^{*}~0.85$ * fc'/ fy * 600 / (600 + fy)]	0.03035714 kN.m			
Maximum Moment Resistance Factor	: Rnmax	= [$0.75*\rho b*fy*(1-\frac{1}{2}*0.75*\rho b*fy/(0.85*fc')$]	7.76953125 kN/m ²			
Nominal Moment (Planned Moment)	: Mn	= $[Mu / \phi]$	5.067 mm ²			
Moment Resistance Factor	: Rn	= $[Mn * 10^6 / (h * de^2)]$	0.948 kN/m ²			
		Rn < Rnmax	OK!			
Required Reinforcement Ratios	÷ρ	= $[0.85*fc'/fy*(1-\sqrt{1-2*Rn/(0.85*fc'))}]$	0.0023			
Minimum Reinforcement Ratio	: p _{min}	= [1.4 / fy]	0.0033			
Reinforcement Ratio Used	: p	= [min (ρ , ρ min)]	0.0033			
Required Reinforcement Area	: As	$= [\rho * h * de]$	698 mm ²			
Maximum Spacing of Flexure Reinforcement	: Smax	= [$(1/4) * \pi * D^2 * h / As$]	244 mm			
Spacing of Flexure Reinforcement Used	: S		200 mm			
Longitudinal Flavura Reinforcement Used		D13 - 200				
Longitudinal i lexure reinforcement oscu	•	D10 - 200				
3. Shear Reinforcement of Diaphragm						
Diameter of Rebar	: Dv	=[Input]	10 mm			
Shear Reduction Factor	φv	= [SNI 2847-2019]	0.75			
Ultimate Shear Force	: Vu	= [Midas Civil Calculation]	11.693 kN			
Effective Thickness of the Pilecap	: de	= $[t - dc - Df - 0.5Dv]$	152 mm			
Concrete Shear Strength	: Ve	= [(1/6) $\sqrt{(\text{fc Mpa})} \text{ de h}$]	191.045628 mm2			
Smallest Factored Shear Force	:	= [0.5 φv Vc]	71.6421105			
Check Concrete Shear Value	: Vu < 0.5	5 ø v Vc				
	interview No need practica	l for shear reinforcement, only need Il reinforcement				
Shear Reinforcement Used	:	D10 - 200				

Reinforcement Calculation of Deck Slab						
1. General Data of Deck Slab						
Effective Width of Deck Slabs	: b	= [Initial Data]	1360 mm			
Thickness of Deck Slab	: ts	= [Initial Data]	70.000 mm			
Concrete Grade	: fc'	= [Initial Data]	30.000 MPa			
Yield Strength of Rainforcement Steel ($D \ge 13$)	: fy	= [Initial Data]	420 MPa			
Yield Strength of Rainforcement Steel (D < 13)	: fy	= [Initial Data]	240 MPa			
Momen Ultimate	: Mu	= [Midas Civil Calculation]	0.39 kN.m			
Flexural Reduction Factor	÷φf		0.9			
Concrete Cover	: cd	= [Input]	30 mm			
2. Flexure Reinforcement of Floor Slab						
Diameter of Rebar	: Df	= [Input]	10 mm			
Effective Thickness of the Deck Slab	: de	= [h - dc -0.5D]	35 mm			
Concrete Stress Distribution Shape Factor	: β ₁	= [fc' > 30 MPa]	0.85			
Reinforcement Ratio in Balance Condition	: p _b	= [$\beta 1^* 0.85 * fc' / fy * 600 / (600 + fy)]$	0.06450893 kN.m			
Maximum Moment Resistance Factor	: Rnmax	$= \left[\ 0.75^* \rho b^* f y^* (1 - \frac{1}{2} * 0.75^* \rho b^* f y/(0.85^* f c') \ \right]$	8.96789302 kN/m ²			
Nominal Moment (Planned Moment)	: Mn	= [Mu / \ \]	0.428 mm ²			
Moment Resistance Factor	: Rn	= $[Mn * 10^6 / (b * de^2)]$	0.257 kN/m ²			
		Rn < Rnmax	OK!			
Required Reinforcement Ratios	: p	= $\left[0.85 \text{*fc'/fy}(1 - \sqrt{1 - 2 \text{* Rn/(} 0.85 \text{*fc'})}) \right]$	0.0011			
Minimum Reinforcement Ratio	:ρ _{min}	= [1.4 / fy]	0.0058			
Reinforcement Ratio Used	÷ρ	= [min (ρ , ρ min)]	0.0058			
Required Reinforcement Area	: As	= [$\rho * b * de$]	278 mm ²			
Maximum Spacing of Flexure Reinforcement	: Smax	= [$(1/4) * \pi * D^2 * b / As$]	385 mm			
Spacing of Flexure Reinforcement Used	: S		200 mm			
Longitudinal Flexure Reinforcement Used	:	D10 - 200				
3. Transverse Reinforcement of Floor Slab			-			
Diameter of Rebar	: Dv	= [Input]	10 mm			
Reinforcement Percentage	: Pt	= $[Min (110/\sqrt{S}, 67\%)]$	67 %			
Minimum Area of Transverse Reinforcement	: As_reqp	$\mathbf{p} = [(\mathrm{As_req} * \mathrm{Pt})]$	186.037 mm ²			
Maximum Spacing of Transverse Reinforcement	: Smax	= [(b * (1/4) * π * D ²)/ As_req]	574.156 mm			
Spacing of Flexure Reinforcement Used	: S		300 mm			
Specing of Transverse Reinforcement Used	:	D10 - 300				

	Loading of Bridge	e Substuc	ture and Foundation	
1.	Loads from Superstructure Reaction			
	Self-Weight of the Superstructure	: MS	= [Midas Civil Calculation]	721.560 kN
	Berrier and Sidewalk Load	: MA	= [Midas Civil Calculation]	162.978 kN
	Wearing Surface load	: MA _(uty)	= [Midas Civil Calculation]	38.733 kN
	Pedestrian Load	: TP	= [Midas Civil Calculation]	48.854 kN
	Line Load	: TD	= [Midas Civil Calculation]	432.668 kN
	Truck Load	: TT	= [Midas Civil Calculation]	393.998 kN
2.	Load due to Active Ground Pressure			
	Specific Gravity of Soil	: ysoil		18 kN/m ³
	Angle of Internal Friction	: φ		30 MPa
	Cohesion of Soil	: C		1 kN/m^2
	Active Earth Pressure Coefficient	: Ka	= $[Tan^{2}(45^{\circ} - (\phi/2))]$	0.333
	Active Ground Pressure for Depth 0 m	: P _{A1}	= $[(1/2) D * \gamma_{soil} * Ka]$	0.000 kN
	Active Ground Pressure for Depth 2.45 m	: P _{A2}	= $[(1/2) D * \gamma_{soil} * Ka]$	7.350 kN
	Active Ground Pressure for Depth 6 m	: P _{A3}	= $[(1/2) D * \gamma_{soil} * Ka]$	18.000 kN
	Active Ground Pressure for Depth 7.5 m	: P _{A4}	= $[(1/2) D * \gamma_{soil} * Ka]$	22.500 kN
3.	Vertical Springs for the Soils Adjacent to Piles			
	<u>For Depths 0 - 6 m</u>			
	Soil Type	:		Loose Sand
	Diameter of Pile	: D		0.80 m
	Unit Weight of Soil	:γ _{soil}		18.00 kN/m ³
	Internal Friction Angle	: φ		32 °
	Coeff. of Subgrade Reaction	: Ko	$= [1-\sin(\phi)]$	0.47
	Coeff. of Subgrade Reaction	: Kh	= [Table 3.12 (Terzaghi).]	1.086 kN/m ³
	<u>For Depths 6 - 30 m</u>			
	Soil Type	:		Dense Sand
	Diameter of Pile	: D		0.80 m
	Unit Weight of Soil	:γ _{soil}		22.00 kN/m^3
	Internal Friction Angle	: φ		40 °
	Coeff. of Subgrade Reaction	: Ko	$= [1 - Sin(\phi)]$	0.36
	Coeff. of Subgrade Reaction	: Kh	= [Table 3.12 (Terzaghi).]	10.857 kN/m ³
1				

Bridge Substucture and Foundation Analysis with Midas Civil 2022

Stability of Abutment and Bearing Capacity of Foundation									
St	Stability of Abutment								
1. Control of Abutment Stability Againts Tipping (Rol	ling)								
Vertical Moment	: Mv	= [Midas Civil Calculation]	699.099 kN.m						
Horizontal Moment	: Mh	= [Midas Civil Calculation]	332.053 kN.m						
Factor of Safety	: SoF		2						
Factor of Safety For Tipping	: Soft	= [Mv/Mh]	2.105						
Control		= [SoFt > SoF]	OK!						
2. Control of Abutment Stability Againts Shearing									
Angle of Internal Friction	: φ	=	30 °						
Cohesion of Soil	: C	=	1 kN/m^2						
Area of Abutment Base	: A	= [P . L]	50 m^2						
Vertical Force	: V	= [Midas Civil Calculation]	1595.589 kN						
Horizontal Force	: H	= [Midas Civil Calculation]	325.934 kN						
Factor of Safety	: SoF		1.5						
Factor of Safety For Shear	: Sofx	= $[((C * A) + (V * \tan \phi)) / Hx]$	2.97978652						
Control		= [SoFx > SoF]	OK!						
	C								
Dearin	ig Capacity of	of Foundation							
1. Soll Farameters	• N.	– [Initial Data]	10						
N-SPT for Donth 6 15 m	• N.	– [Initial Data]	50						
N-SF 1 101 Depth 0 - 15 m Sail Specific Crevity for Depth () - 6 m	• 112	= [Initial Data]	18 kN/m^3						
Soil Specific Cravity for Depth 6 - 15 m	• 11 • Va	= [Initial Data]	$\frac{10 \text{ kIV/III}}{22 \text{ kV/m}^3}$						
Soli Specific Gravity for Depth 0 - 15 m Sofety of Factor	• 72 • SoF	= [Initial Data]	2.5						
Safety of Factor			2.5						
Length of Pile	: H	= [Preliminary Design]	15 m						
Pile Length at Depth 0 - 6 m	: H ₁	= [Preliminary Design]	6 m						
Pile Length at Depth 6 - 15 m	: H ₂	= [Preliminary Design]	9 m						
Diameter of Pile	: D	= [Preliminary Design]	0.8 m						
Lateral Surface Area for Depth 0 - 6 m	: A _{S1}	= $[\pi * D * H_1]$	15.080 mm ²						
Lateral Surface Area for Depth 6 - 15 m	: A _{S2}	$= [\pi * D * H_2]$	22.619 mm ²						
Pile Area Tip	: At	= $[(1/4) * \pi * D^2]$	0.503 mm ²						
1. Foundation Data									
Length of Pile	: f _{S1}	$= [2 * N_1 < 100 \text{ kPa}]$	20 kPa						
Pile Length at Depth 0 - 6 m	: f _{S2}	$= [2 * N_2 < 100 \text{ kPa}]$	100 kPa						
Pile Length at Depth 6 - 15 m	: qt	= $[(40 * N2 kPA * H) / D]$	10000 kPa						
Ultimate Skin Friction at Depth 0 - 6 m	: R _{S1}	$= [f_{S1} * A_{S1}]$	301.593 kN						
Ultimate Skin Friction at Depth 6 - 15 m	: R _{S2}	$= [f_{S2} * A_{S2}]$	2261.947 kN						
Ultimate End Bearing	: Rt	= [qt * At]	5026.548 kN						
	0								
Ultimate Pile Capacity	: Qu	$= \begin{bmatrix} \mathbf{K}_{S1} + \mathbf{K}_{S2} + \mathbf{K}_{I} \end{bmatrix}$	7590.088 kN						
Allowable Load	: Qa	= [Qu / SoF]	3036.035 kN						
Structure Axial Load	: Pu	=	1886.38 kN						
Control	:	Qa > Pu	OK						

3. Transverse Reinforcement			
Diameter of Flexure Rebar	: D	= [Input]	16 mm
Concrete Density Modification Factors	:λ	=	1
Indication Factor	:β	=	2
Reduction Factor	: φ v	= [SNI 2847-2019]	0.75
Ultimate Shear Force	: Vu	= [Midas Civil Calculation]	316.681 kN.m
Evaluated Over a 1-Meter Distance	: b'	=	1000 mm
Effective Thickness of the Breastwall	: de	= [h - dc - 0.5D]	1142 mm
Concrete Shear Strength	: Vc	= [0.083 * β * $\sqrt{(fc Mpa)}$ *b *de]	10383.2861 kN
	:	= [0.5 \phi V c]	3893.73228
Check Concrete Shear Value	: Vu < 0.:	5 φ v Vc	
	: Use Min	nimum Shear Reinforcement	
Minimum Shear Reinforcement Area	: Av_min	$I = [(0.083^{*}\lambda^{*}\sqrt{(fc Mpa)^{*}b^{*}b'}) / fy]$	10824.041 mm ²
Attempted Reinforcement Distance	: S		150 mm
Reinforcement Area Used	: Av_use	= [$(1/4) * \pi * D^2 * b / S$]	13404.1287 mm ²
Control Reinforcement Area	:	Av_use > Av_min	OK!
Shear Reinforcement Used	:	D16 - 150	
4. Shear Reinforcement			•
Diameter of Flexure Rebar	: D	= [Input]	16 mm
Concrete Density Modification Factors	:λ	=	1
Indication Factor	:β	=	2
Reduction Factor	: φ v	= [SNI 2847-2019]	0.75
Ultimate Shear Force	: Vu	= [Midas Civil Calculation]	316.681 kN.m
Evaluated Over a 1-Meter Distance	: b'	=	1000 mm
Effective Thickness of the Breastwall	: de	= [h - dc - 0.5D]	1142 mm
Concrete Shear Strength	: Ve	= [0.083 * β * $\sqrt{(fc Mpa)}$ *b *de]	5191.64303 mm2
Smallest Factored Shear Force	:	$= [0.5 * \phi v * Vc]$	1946.86614
Check Concrete Shear Value	: Vu < 0.	5 * \$ v * Vc	
	: Use Min	nimum Shear Reinforcement	
Spasing of Shear Reinforcement Y Direction Used	: Sy		600 mm
Shear Reinforcement Strength	: Vs	$= [(Vu / \phi v) - Vc]$	-4769.4017 kN
Shear Reinforcement Area Required	: Av ₁	= [(Vs * b) / (fy * de)]	-99437.113 mm ²
Minimum Shear Reinforcement Area	: Av_min	$h = [(0.083*\lambda*\sqrt{(fc Mpa)*b*b'}) / fy]$	10824.041 mm ²
Shear Reinforcement Area Used	: Av	= $[Max (Av_1, Av_min)]$	10824.041 mm ²
Maximum Spacing od Shear Reinforcement	: Sx_max	$x = [(b^*s^*(1/4)^*\pi^*D^2) / (Av^*Sy)]$	309.591599 mm
Spasing of Shear Reinforcement X Direction Used	: Sx		300 mm
Shear Reinforcement Used	:	D16 - 300/600	

Reinforcement Calculation of Backwall								
1. General Data of Backwall			-					
Height of Backwall	: h	= [Initial Data]	700 mm					
Longitudinal Width of Backwall	: bx	= [Initial Data]	10000 mm					
Transversal Width of Backwall	: by	= [Initial Data]	2400 mm					
Concrete Grade	: fc'	= [Initial Data]	30 MPa					
Yield Strength of Rainforcement Steel ($D \ge 13$)	: fy	= [Initial Data]	420 MPa					
Concrete Cover	: dc	= [Input]	50 mm					
2 Lingitudinal Elexure Reinforcement								
Diameter of Flexure Rebar	· D	= [Input]	19 mm					
Flexure Reduction Factor	. ይ • ሐ.	= [SNI 2847-2019]	0.9					
Illtmate Moment	• Ψſ • Μu	= [Midas Civil Calculation]	360 989 kN m					
Evaluated Over a 1-Meter Distance	• h'		1000 mm					
Effective Thickness of the Packwall	. U . do	= [h - dc - 0.5D]	640.5 mm					
Concrete Stress Distribution Share Factor	• ue • R.	$= [f_{c} + 30 MP_{2}]$	0.85					
Concrete Stress Distribution Shape Factor	· P1	$= \begin{bmatrix} 0.1 \times 0.85 \times f_{0} / (f_{0} \times 600) / (f_{0} \times 600) + f_{0} \end{bmatrix}$	0.03					
Memberson Memory Desistance Condition	: p _b	$= \left[p_1 \cdot 0.85 \cdot 10^{-1} y \cdot 000^{-1} (000^{-1} y) \right]$ $= \left[0.75 \cdot 1.86 \cdot 10^{-1} y \cdot 000^{-1} (0.95 \cdot 6.1) \right]$	7.76052125 124					
Maximum Moment Resistance Factor	: Knmax	$= \begin{bmatrix} 0.75^{\circ} pb^{\circ} 1y^{\circ} (1 - \frac{1}{2} \cdot 0.75^{\circ} pb^{\circ} 1y^{\circ} (0.85^{\circ} 1c^{\circ}) \end{bmatrix}$	7.70955125 kN/m					
Nominal Moment (Planned Moment)	: Mn	$-[100, \psi]$	401.099 KN.m					
Moment Resistance Factor	: Kn	= [Mn + 10 / (b + de)]	$0.9/8 \text{ kN/m}^2$					
			UK!					
Required Reinforcement Ratios	: p	$= \begin{bmatrix} 0.85 \text{ tc/ly}(1 - \sqrt{1 - 2 \text{ kn/}(0.85 \text{ tc'}))} \end{bmatrix}$ = $\begin{bmatrix} 0.5 \sqrt{6} \text{ t} \end{bmatrix}$	0.0024					
Minimum Reinforcement Ratio	:ρ _{min}	$= \begin{bmatrix} 0.57 \text{ Iy} \end{bmatrix}$	0.0012					
Reinforcement Ratio Used	÷ρ	$= [\min(\rho, \rho \min)]$	0.0024					
Required Reinforcement Area	: As	$= [\rho * b' * de]$	1521 mm ²					
Maximum Spacing of Flexure Reinforcement	: Smax	= $[(1/4) * \pi * D * b' / As]$	186 mm					
Spacing of Flexure Reinforcement Used	: S	V	150 mm					
Longitudinal Flexure Reinforcement Used	:	D19 - 150						
3. Transverse Flexure Reinforcement			-					
Diameter of Flexure Rebar	: D	= [Input]	13 mm					
Required Reinforcement Area	: As'	= [50% * As]	760 mm ²					
Maximum Spacing of Flexure Reinforcement	: S'max	= [(1/4) * π * D ² * b / As]	175 mm					
Spacing of Flexure Reinforcement Used	: S'		150 mm					
Longitudinal Flexure Reinforcement Used	:	D13 - 150						
4. Shear Reinforcement								
Diameter of Flexure Rebar	: Dv	= [Initial Data]	13 mm					
Concrete Density Modification Factors	:λ		1					
Shear Reduction Factor	: 	= [SNI 2847-2019]	0.75					
Ultimate Shear Force	: Vu	= [Midas Civil Calculation]	241.336 kN					
Evaluated Over a 1-Meter Distance	: b'	=	1000 mm					
Effective Thickness of the Backwall	: de	= [h - dc - 0.5Dv]	643.5 mm					
Concrete Shear Strength	: Vc	$= [(1/6) \sqrt{(\text{fc Mpa})} \text{ de b}]$	5874.32443 kN					
Smallest Factored Shear Force	:	= [0.5 dv Vc]	2202.87166 kN					
Check Concrete Shear Value	: Vu < 0.5	5 dv Vc						
	: Use Min	imum Shear Reinforcement						
Spasing of Shear Reinforcement Y Direction Used	: Sy	=	400 mm					
Shear Reinforcement Strength	: Vs	= $[(Vu / \phi v) - Vc]$	-5552.5431 kN					
Shear Reinforcement Area Required	: Av ₁	= [(Vs * b) / (fy * de)]	-205444.3 mm ²					
Minimum Shear Reinforcement Area	: Av min	= [$(0.083*\lambda*\sqrt{(fc Mpa)*b*b'}) / fy]$	10824.041 mm ²					
Shear Reinforcement Area Used	: Av	$= [Max (Av_1, Av_min)]$	10824.041 mm ²					
Maximum Spacing od Shear Reinforcement	: Sx max	= $[(b*b'*(1/4)*\pi*D^2)/(Av*Sv)]$	306.568243 mm					
Spasing of Shear Reinforcement X Direction Used	: Sx	=	300 mm					
Shear Reinforcement Used	:	D13 - 300/400						

Reinforcement Calculation of Wingwall							
1. General Data of Wingwall							
Height of Wingwall	: h	= [Initial Data]	400 mm				
Longitudinal Width of Wingwall	: bx	= [Initial Data]	7500 mm				
Transversal Width of Wingwall	: by	= [Initial Data]	4400 mm				
Concrete Grade	: fc'	= [Initial Data]	30 MPa				
Yield Strength of Rainforcement Steel ($D \ge 13$)	: fy	= [Initial Data]	420 MPa				
Yield Strength of Rainforcement Steel (D < 13)	: fy	= [Initial Data]	240 MPa				
Concrete Cover	: dc	= [Input]	50 mm				
2. Lineite des l Element Deinfernennet							
2. Lingitudinal Flexure Reinforcement	• D	= [Input]	16 mm				
Elayura Daduation Eastar	• D • d	= [SNI 2847-2019]	0.0				
Electric Reduction Factor	• Ψf • Mu	= [Midas Civil Calculation]	0.5 132 427 kN m				
Evoluated Over a 1 Meter Distance	· NIU		1000 mm				
Evaluated Over a 1-Meter Distance	· D	= [h - dc -0.5D]	242 mm				
Effective Thickness of the Whigwah	. ae	$= [f_{0} + g_{0} + g$	0.85				
Concrete Stress Distribution Shape Factor	: P1	$= \begin{bmatrix} 0.1 \times 0.85 \times 50^{-1} \\ 0.1 \times 0.85 \times 50^{-1} \\ 0.1 \times 0.00 \\ 0.1 \times$	0.03035714				
Maximum Mamont Desistance Condition	· Pb	$= \left[0.75 \times 0.85 \times 10^{-1} \text{ IV} \times 0.007 (000 + 1\text{ IV}) \right]$ $= \left[0.75 \times 0.85 \times 10^{-1} \text{ IV} \times 0.75 \times 0.85 \times 10^{-1} \text{ IV} \times 0.75 \times 0.85 \times 10^{-1} \text{ IV} \right]$	7.76052125 LN/ 2^{-2}				
Nominal Moment (Blanned Moment)	· Mn	$= \begin{bmatrix} 0.75 \cdot p0^{-1} y \cdot (1 - 2^{-0} \cdot 75 \cdot p0^{-1} y / (0.85 \cdot 10^{-1}) \end{bmatrix}$ $= \begin{bmatrix} M_{11} / \phi \end{bmatrix}$	1.70955125 KN/m				
Nominal Moment (Planned Moment)	: MIN	$-[Mu^{2} \psi]$	14/.141 KN.M				
Moment Resistance Factor	; KN		1.238 kN/m				
Description of Desire for an and Desire a		Kn < Knmax	0.0021				
Required Reinforcement Ratios	: p	$= \begin{bmatrix} 0.85 + 10^{-1} y^{+} (1 - \sqrt{1 - 2} + \text{KH}/(0.85 + 10^{-1})) \end{bmatrix}$ $= \begin{bmatrix} 0.5 / 6y \end{bmatrix}$	0.0031				
Minimum Reinforcement Ratio	: ρ _{min}	= [0.571y]	0.0012				
Reinforcement Ratio Used	:ρ	$-[\min(\rho, \rho \min)]$	0.0031				
Required Reinforcement Area	: As	$= [\rho + b + de]$ = [(1/4) * - * D ² * h! / A =]	1051 mm ⁻				
Maximum Spacing of Flexure Reinforcement	: Smax	$-\left[\left(1/4\right)\cdot\pi\cdot\mathbf{D}\cdot\mathbf{b}/\mathbf{As}\right]$	191 mm				
Spacing of Flexure Reinforcement Used	: 5	D16 150	150 mm				
Longitudinal Flexure Remforcement Used	·	D10 - 150					
3. Transverse Flexure Reinforcement			-				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar	: D	= [Input]	13 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area	: D : As'	= [Input] = [50% * As]	13 mm 525 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement	: D : As' : S'max	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As]	¹³ mm ⁵²⁵ mm ² 253 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used	: D : As' : S'max : S'	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As]	13 mm 525 mm ² 253 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used	: D : As' : S'max : S' :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150	13 mm 525 mm ² 253 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used	: D : As' : S'max : S' :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150	13 mm 525 mm ² 253 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar	: D : As' : S'max : S' :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input]	13 mm 525 mm ² 253 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors	: D : As' : S'max : S' : : Dv : λ	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] =	13 mm 525 mm ² 253 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor	: D : As' : S'max : S' : : : Dv : λ : φv	= [Input] = [$50\% * As$] = [$(1/4) * \pi * D^2 * b / As$] D13 - 150 = [Input] = = [SNI 2847-2019]	13 mm 525 mm ² 253 mm 150 mm 13 mm 1 0.75				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force	: D : As' : S'max : S' : : : : Dv : λ : φv : Vu	 [Input] [50% * As] [(1/4) * π * D² * b / As] D13 - 150 	13 mm 525 mm ² 253 mm 150 mm 13 mm 1 0.75 110 527 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	 [Input] [50% * As] [(1/4) * π * D² * b / As] D13 - 150 	13 mm 525 mm ² 253 mm 150 mm 1 1 0.75 110.527 kN 1000 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	<pre>= [Input] = [50% * As] = [(1/4) * π * D² * b / As] D13 - 150 = = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dy]</pre>	13 mm 525 mm ² 253 mm 150 mm 150 mm 1 0.75 110.527 kN 1000 mm 343.5 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength	: D : As' : S'max : S' : : : : Dv : λ : φv : Vu : b' : de : Vc	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)}$ de b]	13 mm 525 mm ² 253 mm 150 mm 150 mm 1 10.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Eactored Shear Force	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [0.5 $\phi v Vc$]	13 mm 525 mm ² 253 mm 150 mm 150 mm 1 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881 918899 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [0.5 $\phi v Vc$] 5 $\phi v Vc$	13 mm 525 mm ² 253 mm 150 mm 150 mm 1 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	= [Input] = [$50\% * As$] = [$(1/4) * \pi * D^2 * b / As$] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [$(1/6) \sqrt{(fc Mpa) dc b}$] = [$0.5 \phi v Vc$] 5 $\phi v Vc$	13 mm 525 mm ² 253 mm 150 mm 150 mm 1 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used	: D : As' : S'max : S' : : : Dv : λ : φv : Vu : b' : de : Vc : : : Vu < 0.5 : Use Min : Sy	= [Input] = [$50\% * As$] = [$(1/4) * \pi * D^2 * b / As$] D13 - 150 = [Input] = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = [$(1/6) \sqrt{(fc Mpa)} de b$] = [$0.5 \phi v Vc$] 5 $\phi v Vc$ minum Shear Reinforcement =	13 mm 525 mm ² 253 mm 150 mm 150 mm 1 10.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Strength	: D : As' : S'max : S' : : : Dv : λ : φv : λ : φv : Vu : b' : de : Vc : : : Vu < 0.5 : Use Min : Sy : Vs	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [0.5 $\phi v Vc$] 5 $\phi v Vc$ minum Shear Reinforcement = = [(Vu / ϕv) - Vc]	13 mm 525 mm ² 253 mm 150 mm 150 mm 1 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN 400 mm -2204.4144 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Strength Shear Reinforcement Area Required	: D : As' : S'max : S' : : : : Dv : λ : φv : λ : φv : Vu : b' : de : Vc : : : Use Min : Sy : Vs : Av ₁	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [0.5 ϕ v Vc] 5 ϕ v Vc bimum Shear Reinforcement = = [(Vu / ϕ v) - Vc] = [(Vs * b) / (fy * dc)]	13 mm 525 mm ² 253 mm 150 mm 150 mm 13 mm 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN 400 mm -2204.4144 kN -114598.38 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Strength Shear Reinforcement Area	 : D : As' : S'max : S' : Dv : λ : φv : Vu : b' : de : Vc : Use Min : Sy : Vs : Av₁ : Av_min 	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [0.5 ϕ v Vc] 5 ϕ v Vc himum Shear Reinforcement = = [(Vu / ϕ v) - Vc] = [(Vs * b) / (fy * dc)] = [(0.083*\lambda* $\sqrt{(fc Mpa)*b*b')} / fy]$	13 mm 525 mm ² 253 mm 150 mm 150 mm 13 mm 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN 400 mm -2204.4144 kN -114598.38 mm ² 897.261586 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used	 : D : As' : S'max : S' : Dv : λ : φv : Vu : b' : de : Vc : Vc : Use Min : Sy : Vs : Av_min : Av 	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} de b]$ = [0.5 $\phi v Vc$] 5 $\phi v Vc$ mimum Shear Reinforcement = = [(Vu / ϕv) - Vc] = [(Vs * b) / (fy * de)] = [(0.083* $\lambda * \sqrt{(fc Mpa)} * b^*b') / fy]$ = [Max (Av ₁ , Av_min)]	13 mm 525 mm ² 253 mm 150 mm 150 mm 13 mm 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN 400 mm -2204.4144 kN -114598.38 mm ² 897.261586 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement	 : D : As' : S'max : S' : Dv : λ : φv : Vu : b' : de : Vc : Use Mir : Sy : Vs : Av₁ : Av_min : Av : Sx_max 	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} dc b]$ = [(1/6) $\sqrt{(fc Mpa)} dc b]$ = [(0.5 ϕ v Vc] 5 ϕ v Vc himum Shear Reinforcement = = [(Vu / ϕ v) - Vc] = [(Vs * b) / (fy * dc)] = [(0.083*\lambda* $\sqrt{(fc Mpa)*b*b'}) / fy]$ = [Max (Av ₁ , Av_min)] = [(b*b'*(1/4)*\pi*D ²) / (Av*Sy)]	13 mm 525 mm ² 253 mm 150 mm 150 mm 13 mm 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN 400 mm -2204.4144 kN -114598.38 mm ² 897.261586 mm ² 897.261586 mm ² 306.568243 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement X Direction Used	 : D : As' : S'max : S' : : Dv : λ : φv : Vu : b' : de : Vc : Use Mir : Sy : Vs : Av_min : Av_min : Av_mix : Sx 	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [Midas Civil Calculation] = = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [(0.5 $\phi v Vc$] 5 $\phi v Vc$ minum Shear Reinforcement = = [(Vu / ϕv) - Vc] = [(Vs * b) / (fy * dc)] = [(0.083* $\lambda * \sqrt{(fc Mpa)} * b^* b') / fy]$ = [Max (Av ₁ , Av_min)] = [(b*b'*(1/4)*\pi*D ²) / (Av*Sy)] =	13 mm 525 mm ² 253 mm 150 mm 150 mm 13 mm 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN 400 mm -2204.4144 kN -114598.38 mm ² 897.261586 mm ² 897.261586 mm ² 306.568243 mm 300 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Evaluated Over a 1-Meter Distance Effective Thickness of the Wingwall Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement X Direction Used Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement X Direction Used Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement X Direction Used Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement X Direction Used Shear Reinforcement Used	: D : As' : S'max : S' : : : : Dv : λ : ψv : λ : ψv : Vu : b' : de : Vu : b' : de : Vc : : : Use Min : Sy : Vs : Av_min : Av : Sx_max : Sx :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] D13 - 150 = [Input] = = [SNI 2847-2019] = [Midas Civil Calculation] = = [h - dc - 0.5Dv] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [(1/6) $\sqrt{(fc Mpa)} dc b$] = [0.5 ϕ v Vc] 5 ϕ v Vc binum Shear Reinforcement = = [(Vu / ϕ v) - Vc] = [(Vu / ϕ v) - Vc] = [(Vs * b) / (fy * dc)] = [(0.083 $\lambda \sqrt{(fc Mpa)} b^{*b'}) / fy]$ = [Max (Av ₁ , Av_min)] = [(b*b'*(1/4) * π *D ²) / (Av*Sy)] = D13 - 300/400	13 mm 525 mm ² 253 mm 150 mm 150 mm 13 mm 1 0.75 110.527 kN 1000 mm 343.5 mm 2351.78373 kN 881.918899 kN 400 mm -2204.4144 kN -114598.38 mm ² 897.261586 mm ² 897.261586 mm ² 306.568243 mm 300 mm				

Reinforcement Calculation of Approch Slab							
1. General Data of Approch Slab							
Height of Approch Slab	: h	= [Initial Data]	300 mm				
Longitudinal Width of Approch Slab	: bx	= [Initial Data]	10000 mm				
Transversal Width of Approch Slab	: by	= [Initial Data]	3700 mm				
Concrete Grade	: fc'	= [Initial Data]	30 MPa				
Yield Strength of Rainforcement Steel ($D \ge 13$)	: fy	= [Initial Data]	420 MPa				
Yield Strength of Rainforcement Steel (D < 13)	: fy	= [Initial Data]	240 MPa				
Concrete Cover	: dc	= [Input]	50 mm				
2. Lingitudinal Flexure Reinforcement							
Diameter of Flexure Rebar	: D	= [Input]	16 mm				
Flexure Reduction Factor	:	= [SNI 2847-2019]	0.9				
Ultmate Moment	: Mu	= [Midas Civil Calculation]	79.311 kN.m				
Evaluated Over a 1-Meter Distance	: b'	=	1000 mm				
Effective Thickness of the Approch Slab	: de	= [h - dc -0.5D]	242 mm				
Concrete Stress Distribution Shape Factor	:β ₁	= [fc' > 30 MPa]	0.85				
Reinforcement Ratio in Balance Condition	: p _b	= [$\beta 1^* 0.85 * fc' / fy * 600 / (600 + fy)$]	0.03035714				
Maximum Moment Resistance Factor	: Rnmax	= [$0.75*\rho b*fy*(1-\frac{1}{2}*0.75*\rho b*fy/(0.85*fc')$]	7.76953125 kN/m ²				
Nominal Moment (Planned Moment)	: Mn	= $[Mu / \phi]$	88.123 kN.m				
Moment Resistance Factor	: Rn	= $[Mn * 10^6 / (b' * de^2)]$	1.505 kN/m ²				
		Rn < Rnmax	OK!				
Required Reinforcement Ratios	: p	= $\left[0.85 \text{*fc'/fy}(1 - \sqrt{(1 - 2 \text{*Rn/(} 0.85 \text{*fc'}))} \right]$	0.0037				
Minimum Reinforcement Ratio	:ρ _{min}	= [1.4 / fy]	0.0033				
Reinforcement Ratio Used	: p	= [min (ρ , ρ min)]	0.0037				
Required Reinforcement Area	: As	= [$\rho * b' * de$]	894 mm ²				
Maximum Spacing of Flexure Reinforcement	: Smax	= [(1/4) * π * D ² * b' / As]	225 mm				
Spacing of Flexure Reinforcement Used	: S		200 mm				
Longitudinal Flexure Reinforcement Used	:	D16 - 200					
3. Transverse Flexure Reinforcement							
Diameter of Flexure Rebar	: D	= [Input]	13 mm				
Required Reinforcement Area	: As'	= [50% * As]	447 mm ²				
Maximum Spacing of Flexure Reinforcement	: S'max	= [$(1/4) * \pi * D^2 * b / As$]	297 mm				
Spacing of Flexure Reinforcement Used	: S'		200 mm				
Longitudinal Flexure Reinforcement Used	:	D13 - 200					
4 Sheer Doinforcement							
Diameter of Flexure Rebar	: Dv	= [Input]	13 mm				
Concrete Density Modification Factors	: λ	=	1				
Shear Reduction Factor	: o v	= [SNI 2847-2019]	0.75				
Ultimate Shear Force	: Vu	= [Midas Civil Calculation]	61.36 kN				
Evaluated Over a 1-Meter Distance	: b'	=	1000 mm				
Effective Thickness of the Approch Slab	: de	= [h - dc - 0.5Dv]	243.5 mm				
Ultimate Shear Force	: Vu	= [Midas Civil Calculation]	61.36 k N				
Concrete Shear Strength	: Ve	= $[(1/6) \sqrt{(\text{fc Mpa}) \text{de b}}]$	2222.84071 kN				
Smallest Factored Shear Force	:	$= [0.5 \phi V V c]$	833.565267 kN				
Check Concrete Shear Value	: Vu < 0.5	5 ov Vc					
	: Use Min	imum Shear Reinforcement					
Spasing of Shear Reinforcement Y Direction Used	: Sy	=	400 mm				
Shear Reinforcement Strength	: Vs	= $[(Vu / \phi v) - Vc]$	-2141.0274 kN				
Shear Reinforcement Area Required	: Av ₁	= [(Vs * b) / (fy * de)]	-209350.48 mm ²				
Minimum Shear Reinforcement Area	: Av_min	= [$(0.083^{*}\lambda^{*}\sqrt{(fc Mpa)^{*}b^{*}b'}) / fy]$	10824.041 mm ²				
Shear Reinforcement Area Used	: Av	= $[Max(Av_1, Av_min)]$	10824.041 mm ²				
Maximum Spacing of Shear Reinforcement	: Sx_max	= [$(b*b'*(1/4)*\pi*D^2) / (Av*Sy)$]	306.568243 mm				
Spasing of Shear Reinforcement X Direction Used	: Sx	=	300 mm				
Shear Reinforcement Used	:	D13 - 300/400					

Reinforcement Calculation of Pilecap							
1. General Data of Pilecap							
Height of Pilecap	: h	= [Initial Data]	1500 mm				
Longitudinal Width of Pilecap	: bx	= [Initial Data]	10000 mm				
Transversal Width of Pilecap	: by	= [Initial Data]	5000 mm				
Concrete Grade	: fc'	= [Initial Data]	30 MPa				
Yield Strength of Rainforcement Steel ($D \ge 13$)	: fy	= [Initial Data]	420 MPa				
Yield Strength of Rainforcement Steel (D < 13)	: fy	= [Initial Data]	240 MPa				
Concrete Cover	: dc	= [Input]	50 mm				
2. Lingitudinal Flexure Reinforcement							
Diameter of Flexure Rebar	: D	= [Input]	25 mm				
Flexure Reduction Factor	:	= [SNI 2847-2019]	0.9				
Ultmate Moment	: Mu	= [Midas Civil Calculation]	332.427 kN.m				
Evaluated Over a 1-Meter Distance	: b'	=	1000 mm				
Effective Thickness of the Pilecap	: de	= [h - dc - 0.5D]	1437.5 mm				
Concrete Stress Distribution Shape Factor	: β ₁	= [fc' > 30 MPa]	0.85				
Reinforcement Ratio in Balance Condition	: ρ _b	= [$\beta 1^* 0.85 * fc' / fy * 600 / (600 + fy)$]	0.03035714				
Maximum Moment Resistance Factor	: Rnmax	= $\left[0.75^{*}\rho b^{*}fy^{*}(1-\frac{1}{2}*0.75^{*}\rho b^{*}fy^{\prime}(0.85^{*}fc^{\prime}) \right]$	7.76953125 kN/m ²				
Nominal Moment (Planned Moment)	: Mn	= $[Mu / \phi]$	369.363 kN.m				
Moment Resistance Factor	: Rn	= $[Mn * 10^6 / (b' * de^2)]$	0.179 kN/m ²				
		Rn < Rnmax	OK!				
Required Reinforcement Ratios	: p	= $\left[0.85 \text{*fc'/fy}(1 - \sqrt{1 - 2 \text{*Rn}/(0.85 \text{*fc'}))} \right]$	0.0004				
Minimum Reinforcement Ratio	F : Omin	= [0.5 / fy]	0.0012				
Reinforcement Ratio Used	: 0	$= [\min(\rho, \rho \min)]$	0.0012				
Required Reinforcement Area	: As	$= [\rho * b' * de]$	1711 mm²				
Maximum Spacing of Flexure Reinforcement	: Smax	= $[(1/4) * \pi * D^2 * b' / As]$	287 mm				
Spacing of Flexure Reinforcement Used	: 5	=	150 mm				
Longitudinal Flexure Reinforcement Used	:	D25 - 150					
Longhuannar Flexare Reinforteinent östa							
3. Transverse Flexure Reinforcement		- [Input]	10				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Description	: D	= [Input]	19 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area	: D : As'	= [Input] = $[50\% * As]$	19 mm 856 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement	: D : As' : S'max	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As]	19 mm 856 mm ² 331 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used	: D : As' : S'max : S'	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] =	19 mm 856 mm ² 331 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used	: D : As' : S'max : S' :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150	19 mm 856 mm ² 331 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement	: D : As' : S'max : S' :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150	19 mm 856 mm ² 331 mm 150 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar	: D : As' : S'max : S' : :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input]	19 mm 856 mm ² 331 mm 150 mm 16 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors	: D : As' : S'max : S' : : : Dv : λ	= [Input] = [$50\% * As$] = [$(1/4) * \pi * D^2 * b / As$] = D19 - 150 = [Input]	19 mm 856 mm ² 331 mm 150 mm 16 mm 1				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor	: D : As' : S'max : S' : : : Dv : λ : φv	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [SNI 2847-2019]	19 mm 856 mm ² 331 mm 150 mm 16 mm 1 0.75				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force	: D : As' : S'max : S' : : : : Δ : Δ : φv : Vu	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation]	19 mm 856 mm ² 331 mm 150 mm 16 mm 1 0.75 110.527 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv]	19 mm 856 mm ² 331 mm 150 mm 16 mm 1 0.75 110.527 kN 1442 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] =	19 mm 856 mm ² 331 mm 150 mm 16 mm 1 0.75 110.527 kN 1442 mm 1000 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength	: D : As' : S'max : S' : : : Dv : λ : φv : Vu : de : b'' : Vc	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) $\sqrt{(fc Mpa) b dc}$]	19 mm 856 mm ² 331 mm 150 mm 16 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	$= [Input] = [50% * As] = [(1/4) * \pi * D2 * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) \sqrt{(fc Mpa) b de]} = [0.5 \phi v Vc]$	19 mm 856 mm ² 331 mm 150 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) $\sqrt{(fc Mpa) b dc}$] = [0.5 ϕ v Vc] 5 ϕ v Vc	19 mm 856 mm ² 331 mm 150 mm 150 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) $\sqrt{(\text{fc Mpa})}$ b de] = [0.5 ϕ v Vc] input Shear Reinforcement	19 mm 856 mm ² 331 mm 150 mm 150 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used	: D : As' : S'max : S' : : : : : : : : : : : : : : : : : : :	$= [Input] = [50% * As] = [(1/4) * \pi * D2 * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) \sqrt{(fc Mpa) b de]} = [0.5 \phi v Vc]i \phi v Vcimum Shear Reinforcement=$	19 mm 856 mm ² 331 mm 150 mm 150 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Strength	 : D : As' : S'max : S' : : Dv : λ : φv : Vu : de : b'' : Vc : : Vu < 0.5 : Use Min : Sy : Vs 	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [NII 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) $\sqrt{(fc Mpa)}$ b de] = [0.5 ϕ v Vc] 5 ϕ v Vc imum Shear Reinforcement = = [(Vu / ϕ v) - Vc]	19 mm 856 mm ² 331 mm 150 mm 150 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN 600 mm -13016.229 kN				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Strength Shear Reinforcement Area Required	 D As' S'max S' ' Dv λ φv Vu de b'' Vc Vc Vu < 0.5 Use Mini Sy Vs Av₁ 	= [Input] = [50% * As] = [(1/4) * π * D ² * b / As] = D19 - 150 = [Input] = [Midas Civil Calculation] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) $\sqrt{(fc Mpa)} b de]$ = [0.5 $\phi v Vc$] 5 $\phi v Vc$ imum Shear Reinforcement = = [(Vu / ϕv) - Vc] = [(Vs * b) / (fy * de)]	19 mm 856 mm ² 331 mm 150 mm 150 mm 16 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN 600 mm -13016.229 kN -214916.94 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area	 D As' S'max S' S' Dv λ φv Vu de b'' Vc Use Mint Sy Vs Av₁ Av_min 	$= [Input] = [50% * As] = [(1/4) * \pi * D2 * b / As] = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] = = [(1/6) \sqrt{(fc Mpa)} b de] = [(1/6) \sqrt{(fc Mpa)} b de] = [(0.5 \phi v Vc]5 \phi v Vcimum Shear Reinforcement== [(Vu / \phi v) - Vc]= [(Vs * b) / (fy * de)]= [(0.083*\lambda*\sqrt{(fc Mpa)*b*b'}) / fy]$	19 mm 856 mm ² 331 mm 150 mm 150 mm 16 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN 600 mm -13016.229 kN -214916.94 mm ² 10824.041 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used	 D As' S'max S' Dv λ φv Vu de b'' Vc Vc Vu < 0.5 Use Min Sy Vs Av₁ Av_min Av 	= [Input] = [50% * As] $= [(1/4) * \pi * D2 * b / As]$ = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(1/6) \sqrt$	19 mm 856 mm ² 331 mm 150 mm 150 mm 16 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN 600 mm -13016.229 kN -214916.94 mm ² 10824.041 mm ²				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement	 D As' S'max S' S' Dv λ φv Vu de b'' Vc Use Mini Sy Vs Av₁ Av_min Av Sx_max 	= [Input] = [50% * As] $= [(1/4) * \pi * D2 * b / As]$ = D19 - 150 = [Input] = [SNI 2847-2019] = [Midas Civil Calculation] = [h - dc - 0.5Dv] $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(.5 \phi v Vc]$ fov Vc $= [(Vu / \phi v) - Vc]$ $= [(Vu / \phi v) - Vc]$ = [(Vs * b) / (fy * de)] $= [(0.083*\lambda*\sqrt{(fc Mpa)*b*b') / fy]}$ $= [Max (Av_1, Av_min)]$ $= [(b*b*(1/4)*\pi*D^2) / (Av*Sy)]$	19 mm 856 mm ² 331 mm 150 mm 150 mm 16 mm 1 0.75 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN 600 mm -13016.229 kN -214916.94 mm ² 10824.041 mm ² 10824.041 mm ² 309.591599 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement Area	 D As' S'max S' S' Dv λ φv Vu de b'' Vc Vc Vz Vs Av₁ Av_min Av Sx_max Sx 	= [Input] = [50% * As] $= [(1/4) * \pi * D^{2} * b / As]$ = D19 - 150 = [Input] = [Midas Civil Calculation] = [Midas Civil Calculation] = [h - dc - 0.5Dv] $= [(1/6) \sqrt{(fc Mpa) b dc]}$ $= [(1/6) \sqrt{(fc Mpa) b dc]}$ $= [(0.5 \ \phi v Vc]$ $= [(1/6) \sqrt{(fc Mpa) b dc]}$ $= [(0.5 \ \phi v Vc]$ $= [(1/6) \sqrt{(fc Mpa) b dc]}$ $= [(1/6) \sqrt{(fc Mpa) b dc]}$ = [(1/6)	19 mm 856 mm ² 331 mm 150 mm 150 mm 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN 600 mm -13016.229 kN -214916.94 mm ² 10824.041 mm ² 10824.041 mm ² 309.591599 mm 300 mm				
3. Transverse Flexure Reinforcement Diameter of Flexure Rebar Required Reinforcement Area Maximum Spacing of Flexure Reinforcement Spacing of Flexure Reinforcement Used Longitudinal Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Reinforcement Used 4. Shear Reinforcement Diameter of Flexure Rebar Concrete Density Modification Factors Shear Reduction Factor Ultimate Shear Force Effective Thickness of the Pilecap Evaluated Over a 1-Meter Distance Concrete Shear Strength Smallest Factored Shear Force Check Concrete Shear Value Spasing of Shear Reinforcement Y Direction Used Shear Reinforcement Area Required Minimum Shear Reinforcement Area Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement X Direction Used Shear Reinforcement Area Used Maximum Spacing of Shear Reinforcement Spasing of Shear Reinforcement X Direction Used Shear Reinforcement Used	 D As' S'max S' S' Dv λ φv Vu de b'' Vc Use Mini Sy Vs Av₁ Av_min Av Sx_max Sx : 	= [Input] = [50% * As] $= [(1/4) * \pi * D2 * b / As]$ = D19 - 150 = [Input] = [Midas Civil Calculation] = [Midas Civil Calculation] = [Midas Civil Calculation] $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(0.5 \phi v Vc]$ $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(0.5 \phi v Vc]$ $= [(1/6) \sqrt{(fc Mpa) b de]}$ $= [(1/6) \sqrt{(fc Mpa) b de]}$ = [(1/6) (f	19 mm 856 mm ² 331 mm 150 mm 150 mm 110.527 kN 1442 mm 1000 mm 13163.5988 kN 4936.34955 kN 600 mm -13016.229 kN -214916.94 mm ² 10824.041 mm ² 10824.041 mm ² 309.591599 mm 300 mm				

Reinforcement Calculation of Pile								
1. General Data of Pilecap								
Diamater of Pile	: D	= [Initial Data]	800 mm					
Concrete Grade	: fc'	= [Initial Data]	30 MPa					
Yield Strength of Rainforcement Steel ($D \ge 1$	13) : fy	= [Initial Data]	420 MPa					
Yield Strength of Rainforcement Steel (D < 1	13) : fy	= [Initial Data]	240 MPa					
Concrete Cover	: dc	= [Input]	75 mm					
2. Axial-Flexure Reinforcement								
Diameter of Flexure Rebar	: Db	= [Input]	25 mm					
Ultimate Moment for X Direction	: Mux	= [Midas Civil Calculation]	714.75 kN.m					
Ultimate Moment for Y Direction	: Muy	= [Midas Civil Calculation]	857.36 kN.m					
Ultimate Axial Force	Pu	= [Midas Civil Calculation]	1233.24					
Number of Rebar	: n	= [Input]	16					
Reinforcement Area	: As	= $[n * (1/4) * \pi * Db^{2}]$	7853.982 mm					
Cross-Sectional Area	: Ag	$= [(1/4) * \pi * D^{2}]$	502654.825					
Reinforcement Ratios	: p	= [Ασ/Αγ]	1.563					
Minimum Reinforcement Ratio	, ∶ρ _{min}	=	0.500 %					
Check Minimum Reinforcement Ratio		$\rho_{\min} > \rho$	ОК					
		,						
Axial-Flexure Reinforcement Used	:	16D25						
Matterial W	Checked with SP	Produmn Column						
2 Shaan Dainfanaamant	Checked with SP	Column						
Diameter of Shear Debay	• Dv/	= [Input]	16 mm					
Diameter of Snear Kebar Shoon Doduction Factor	: DV	= [mput] = [SNI 2847-2019]	10 mm					
Shear Keduction Factor	: φv	$= \begin{bmatrix} 0.111 & 2.047 & -2.0177 \end{bmatrix}$	0./3 574 (9 LN					
Utimate Snear Force	: Vu	- [Calculation Result of Mildas CIVII 2022] - [SNII 2847 2010]	5/4.08 KN					
Shear Reduction Factor	: φ v	- [5101 2047 - 2017]	0.75					
Spacing of Shear Reinforcement	: b'	-[input]	100 mm ²					
Effective Height	: de	$-\begin{bmatrix} D - ac - DI - DV/2 \end{bmatrix}$	692					
Snear Reinforcement Area	: Av	$= [2^{*}(1/4)^{*}\pi^{*}Dv^{*}]$	201.062 mm					
Concrete Shear Strength	: Ve	$= \lfloor 0.1/*(1+Pu/(14*Ag))*(fc')^{0.3*}D*de \rfloor$	425137.80 mm					
Reinforcement Shear Required	: Vs_req	$= \left[\left(\sqrt{u} / \phi v \right) - \sqrt{c} \right]$	341102.20					
Reinforcement Shear Used	: Vs	$= \lfloor (Av * ty * de) / b' \rfloor$	584366.39					
Control	•	Vs > Vs_req	ОК					
	Smin							
Shear Reinforcement Used		D16 - 100						

Recapitulation of Bridge Reinforcement							
Recapitulation of Su	perstructu	re Bridge Reinforcement					
1. PCI-Girder							
Flexure Reinforcement of Edge PCI-Girder	:	40D13					
Flexure Reinforcement of Middle PCI-Girder	:	26D13					
Specing of Field Reinforcement	:	D13-200					
Specing of Support Reinforcement	:	D13-100					
2. Floor Slab							
Longitudinal Flexure Reinforcement	:	D16 - 100					
Transverse Flexure Reinforcement	:	D13 - 100					
3. Diaphragm							
Flexure Reinforcement	:	D13 - 200					
Shear Reinforcement	:	D10 - 200					
4. Deck Slab							
Longitudinal Flexure Reinforcement	:	D10 - 200					
Transverse Flexure Reinforcement	:	D10 - 300					
Recapitulation of Substruct	ure Bridge	and Foundation Reinforcement					
1. Breast wall							
Axial - Flexure Reinforcement	:	D25 - 150					
Transversal Reinforcement	:	D16 - 150					
Shear Reinforcement	:	D16 - 300/600					
2. Back wall							
Longritudinal Flexure Reinforcement	:	D19 - 150					
Transversal Flexure Reinforcement	:	D13 - 150					
Shear Reinforcement	:	D13 - 300/400					
3. Wing wall							
Longitudinal Flexure Reinforcement	:	D16 - 150					
Transversal Flexure Reinforcement	:	D13 - 150					
Shear Reinforcement	:	D13 - 300/400					
4. Approach Slab			[
Longitudinal Flexure Reinforcement	:	D16 - 200					
Transversal Flexure Reinforcement	:	D13 - 200					
Shear Reinforcement	:	D13 - 300/400					
5 Dilease							
5. Pilecap		Dag. 150					
Longitudinal Flexure Reinforcement	:	D25 - 150					
Transversal Flexure Reinforcement	:	D19 - 150					
Snear Keinforcement	:	D16 - 300/600					
0. File		1/D25					
Axiai - Flexure Reinforcement	:	101/25					
Suear Keinforcement	:	D16 - 100					

3-D View of Bridge Superstructure

Axial Force Diagram

Shear Force Diagram

Moment Diagram

Bridge Superstructure Deformation

45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104
105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124
125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144

Label of Beam Girder

Eigenvalue Mode												
											22	
Mode	U	X	U	Y	U	Z	R	X	R	Y	RZ	
M. 1.		Б		E	GENVA	LUE A	ANALYS	515				
Node	(rad	Frequer (see	uency (ovel	a/saa)	Per	100	Tole	rance				
1	(Iau	6 225725	(Cych	0.990855	(30	1 009229		0				
2		10 250491		1 631416		0.612964		0				
3	3 10.943496 1.741711		0.574148		0							
4		10.943496 1.741711		0.574148		0						
5		10.943497		1.741712		0.574148		0				
6	5 10.943497 1.741712 6 10.943497 1.741712			0.574148		0						
7		11.022165		1.754232		0.57005		0				
8		11.022165		1.754232		0.57005		0				
9		11.022165		1.754232		0.57005		0				
10		11.022165		1.754232		0.57005		0				
11		11.022165		1.754232		0.57005		0				
12		11.022165		1.754232		0.57005		0				
13		17.057198		2.714737		0.36836		0				
14		32.278175		5.137231		0.194657		0			 	
15		46.854978		7.457201		0.134099		0			L	
16		57.858331		9.208439		0.108596		0				
17	ļ	99.749257		15.875587	ļ	0.06299		0			 	
18	1	02.880248		16.3739		0.061073		0			 	
19	1	26.752197		20.173239		0.049571		0			 	
20		27.330468		20.265273		0.049345	A COLC DD				1	
Mada		NV		MODA		PATION M	ASSES PK	INTOUT 'N V	POT	NV	PO1	
No	IKA MASS(0/)	SUDM(0/)	MASS(0/)	IN-I	IKA MASS(0/)	IN-Z	MASS(0/)	SUM(0/)	MASS(0/)	IN-I SUM(0/)	MASS(0/)	SUM(0/)
1	MASS(%)	SUM(%) 81.42	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
2	0.00	81.42	70.14	70.14	0.03	0.05	1.88	1.88	0.00	1.43	0.00	0.00
3	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	8.70
4	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.00	0.00	1.43	8 70	17.40
5	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	26.10
6	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	34.80
7	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	43.50
8	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	52.20
9	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	60.90
10	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	69.60
11	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.70	78.30
12	0.00	81.42	0.00	79.14	0.00	0.05	0.00	1.88	0.00	1.43	8.71	87.00
13	0.00	81.42	0.14	79.28	0.00	0.05	0.06	1.95	0.00	1.43	1.31	88.32
14	0.09	81.51	0.00	79.28	99.74	99.79	0.00	1.95	0.00	1.43	0.00	88.32
15	0.00	81.51	11.38	90.66	0.00	99.79	4.39	6.34	0.00	1.43	0.00	88.32
16	9.08	90.58	0.00	90.66	0.10	99.89	0.00	6.34	0.70	2.12	0.00	88.32
17	0.00	90.58	0.00	90.66	0.00	99.89	3.01	9.35	0.00	2.12	0.01	88.33
18	0.07	90.66	0.00	90.66	0.01	99.90	0.00	9.35	0.01	2.13	0.00	88.33
19	0.00	90.66	0.00	90.67	0.00	99.90	0.08	9.43	0.00	2.13	0.01	88.33
20	0.00 TD 4	90.66	0.00	90.67	0.00	99.90 N Z	0.00	9.43 9.43	0.19	2.32	0.00	EN 7
Node	IKA	IN-A CIM	IKA	IN-Y	IKA	IN-Z	KUI	N-A CUM	KUI	IN-Y	MASS	IN-Z
110	1200 77	1200 77	MA55	5UM	IVIA55	5UM	MA35		MA33	SUM 0.02	IVIA55	
2	1200.77	1200.77	1174.02	1174.02	0.77	0.77	0.00	0.00	0.02	0.02	0.00	0.00
3	0.00	1208.77	0.00	1174.92	0.00	0.77	0.07	0.07	0.00	0.02	1 51	1 51
4	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	3.01
5	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	4.52
6	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	6.03
7	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	7.54
8	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	9.04
9	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	10.55
10	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	12.06
11	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	13.56
12	0.00	1208.77	0.00	1174.92	0.00	0.77	0.00	0.07	0.00	0.02	1.51	15.07
13	0.00	1208.77	2.12	1177.03	0.00	0.77	0.00	0.07	0.00	0.02	0.23	15.30
14	1.34	1210.10	0.00	1177.03	1480.72	1481.49	0.00	0.07	0.00	0.02	0.00	15.30
15	0.00	1210.10	168.97	1346.00	0.00	1481.49	0.16	0.24	0.00	0.02	0.00	15.30
16	134.75	1344.85	0.00	1346.00	1.52	1483.01	0.00	0.24	0.01	0.03	0.00	15.30
17	0.00	1344.85	0.02	1346.02	0.00	1483.01	0.11	0.35	0.00	0.03	0.00	15.30
18	1.07	1345.92	0.00	1346.02	0.16	1483.17	0.00	0.35	0.00	0.03	0.00	15.30
19	0.00	1345.92	0.03	1346.05	0.00	1483.17	0.00	0.35	0.00	0.03	0.00	15.30
20	0.04	1345.96	0.00	1346.05	I 0.01	1483.17	I 0.00	0.35	0.00	0.03	0.00	1 15.30

Tendon Stress Limit Check

		Tendon Stress		Tendon Stress Limit				
Tendon	f nl	f n2	fne	Immediately a	fter anchor set			
Tendon	(N/mm^2)	(N/mm^2)	(N/mm^2)	At anch.	Away from anch.	At service		
G1 - T1	1030.710	1283.274	1057.535	1302	1376.4	1339.2		
G1 - T2	1044.095	1286.072	1058.451	1302	1376.4	1339.2		
G1 - T3	1062.237	1289.793	1061.038	1302	1376.4	1339.2		
G2 - T1	1030.710	1283.274	1056.360	1302	1376.4	1339.2		
G2 - T2	1044.095	1286.072	1057.117	1302	1376.4	1339.2		
G2 - T3	1062.237	1289.793	1059.660	1302	1376.4	1339.2		
G3 - T1	1030.710	1283.274	1056.010	1302	1376.4	1339.2		
G3 - T2	1044.095	1286.072	1056.800	1302	1376.4	1339.2		
G3 - T3	1062.237	1289.793	1059.234	1302	1376.4	1339.2		
G4 - T1	1030.710	1283.274	1056.582	1302	1376.4	1339.2		
G4 - T2	1044.095	1286.072	1057.487	1302	1376.4	1339.2		
G4 - T3	1062.237	1289.793	1059.874	1302	1376.4	1339.2		
G5 - T1	1030.710	1283.274	1057.982	1302	1376.4	1339.2		
G5 - T2	1044.095	1286.072	1059.078	1302	1376.4	1339.2		
G5 - T3	1062.237	1289.793	1061.564	1302	1376.4	1339.2		

Tendon Stress

f_p1 (N/mm2): Maximum stress in tendon at both anchorages immediately after anchor set (only for post-tensioning)

 $\label{eq:f_p2} f_p2 \ (N/mm2): Maximum stress in tendon along the length of the member away from the anchorages immediately after anchor set (only for post-tensioning)$

f_pe (N/mm2): Maximum stress in tendon after all losses, which is obtained at the last construction stage

Tendon Stress Limit

Immediately after anchor set

At anch.: Stress limits for prestressing tendons at anchorages immediately after anchor set

Away from anch.: Stress limits for prestressing tendons elsewhere along the length of the member away from anchorages immediately after anchor set

At service: Stress limits for prestressing tendons at the service limit state, after losses

	Stress Check at service load													
				LCom			FT	FB	FTL	FBL	FTR	FBR	FMAX	ALW
Elem	Part	Girder/Slab	Comp./Tens.	Name	Туре	CHK	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)
85	I[5]	Girder(Composite)	Compression	Layan I-1	MZ-MAX	OK	738.153	6243.881	636.521	6154.953	839.786	6332.809	6332.809	30000.000
85	I[5]	Girder(Composite)	Tension	Layan III-1	MZ-MAX	OK	739.143	6240.510	682.329	6190.798	795.958	6290.223	682.329	-3527.753
85	J[28]	Girder(Composite)	Compression	Layan I-3	FZ-MAX	OK	1628.110	4805.015	1652.042	4825.956	1604.177	4/84.0/4	4825.956	30000.000
85	J[28]	Girder(Composite)	Compression	Layan III-2	FZ-MAA MV MIN	OK	2208 675	4818.311	2422 022	4820.105	2274 408	4810.457	7024 504	-3527.755
86	1[28]	Girder(Composite)	Tension	Layan III-1	MV-MIN	OK	2398.073	7015.288	2422.923	7027.048	2374.408	7026 393	2386 537	-3527 753
86	J[39]	Girder(Composite)	Compression	Layan II-1	MY-MIN	OK	3186.830	5547,174	3216.205	5572.875	3157.432	5521.450	5572.875	30000.000
86	J[39]	Girder(Composite)	Tension	Layan III-2	MY-MIN	OK	4321.570	3107.715	4323.662	3109.546	4319.476	3105.883	3105.883	-3527.753
87	I[39]	Girder(Composite)	Compression	Layan I-4	MY-MIN	OK	3195.932	5539.244	3215.982	5556.787	3175.866	5521.685	5556.787	30000.000
87	I[39]	Girder(Composite)	Tension	Layan III-2	MY-MIN	OK	4318.735	3107.080	4319.534	3107.779	4317.936	3106.380	3106.380	-3527.753
87	J[50]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	5744.144	338.452	5771.402	362.301	5716.865	314.581	5771.402	30000.000
87	J[50]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	5344.059	1182.027	5345.981	1183.708	5342.136	1180.344	1180.344	-3527.753
88	I[50]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	5724.396	345.249	5741.131	359.892	5707.647	330.593	5741.131	30000.000
88	I[50]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	5326.896	1186.873	5327.905	1187.756	5325.885	1185.989	1185.989	-3527.753
88	J[61]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	6578.653	-1196.924	6603.332	-1175.331	6553.955	-1218.536	6603.332	30000.000
88	J[61]	Girder(Composite)	Tension	Layan III-I	MY-MAX	OK	6120.506	-233.941	6122.692	-232.028	6118.318	-235.855	-235.855	-3527.753
89	1[61]	Girder(Composite)	Tension	Layan I-2	MY-MAX MV-MAX	OK	6115.010	-1194.922	6116.428	-1181./88	6113 591	-1208.067	-234 267	-3527 753
89	J[72]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	7475.909	-2819.347	7497.689	-2800.291	7454.112	-2838.421	7497.689	30000.000
89	J[72]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	6917.347	-1655.691	6918.563	-1654.627	6916.130	-1656.756	-1656.756	-3527.753
90	I[72]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	7486.401	-2820.673	7497.688	-2810.797	7475.105	-2830.557	7497.688	30000.000
90	I[72]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	6924.319	-1656.684	6925.885	-1655.314	6922.752	-1658.056	-1658.056	-3527.753
90	J[83]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	8147.868	-3934.698	8167.668	-3917.374	8128.053	-3952.037	8167.668	30000.000
90	J[83]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	7517.540	-2634.513	7519.285	-2632.986	7515.794	-2636.041	-2636.041	-3527.753
91	I[83]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	8145.300	-3930.883	8153.367	-3923.824	8137.226	-3937.948	8153.367	30000.000
91	I[83]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	7514.357	-2631.110	7516.175	-2629.520	7512.538	-2632.702	-2632.702	-3527.753
91	J[94]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	8570.223	-4548.980	8588.099	-4533.340	8552.334	-4564.634	8588.099	30000.000
91	J[94]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	/903.68/	-3180.090	7906.370	-3177.742	7901.001	-3182.440	-3182.440	-3527.753
92	1[94]	Girder(Composite)	Tension	Layan I-2	MY-MAX MV MAY	OK	7801 806	-4540./42	8201.027	-4555./55	7880.072	-4545./55	2175 428	30000.000
92	I[105]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	8762 432	-4707.072	8779 479	-4692 156	8745 372	-4722.000	8779.479	30000.000
92	J[105]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8093.717	-3332.864	8098.574	-3328.614	8088.856	-3337.117	-3337.117	-3527.753
93	I[105]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	8759.367	-4701.689	8765.795	-4696.065	8752.934	-4707.318	8765.795	30000.000
93	I[105]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8090.104	-3327.555	8096.452	-3322.001	8083.751	-3333.114	-3333.114	-3527.753
93	J[116]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	9021.919	-4979.750	9032.965	-4970.085	9010.864	-4989.424	9032.965	30000.000
93	J[116]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8306.085	-3512.034	8307.771	-3510.559	8304.398	-3513.510	-3513.510	-3527.753
94	I[116]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	9030.689	-4977.259	9039.131	-4969.873	9022.240	-4984.652	9039.131	30000.000
94	I[116]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8311.553	-3508.492	8316.743	-3503.952	8306.360	-3513.036	-3513.036	-3527.753
94	J[127]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	9101.195	-4862.526	9110.063	-4854.767	9092.320	-4870.292	9110.063	30000.000
94	J[127]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8366.106	-3361.806	8368.555	-3359.662	8363.654	-3363.951	-3363.951	-3527.753
95	1[127]	Girder(Composite)	Compression	Layan I-I	MY-MAX	OK	9100.761	-4856.680	9111.844	-4846.983	9089.669	-4866.386	9111.844	30000.000
95	1[127]	Girder(Composite)	Compression	Layan I-1	MV-MAX	OK	8984 846	-3355.939	8992 160	-3351.878	8977 526	-3300.043	-5500.045	30000.000
95	J[138]	Girder(Composite)	Tension	Lavan III-1	MY-MAX	OK	8265.710	-2896.846	8269.771	-2893.293	8261.645	-2900.403	-2900.403	-3527.753
96	I[138]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	8975.320	-4357.607	8989.306	-4345.369	8961.322	-4369.855	8989.306	30000.000
96	I[138]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8259.486	-2889.890	8264.112	-2885.843	8254.857	-2893.942	-2893.942	-3527.753
96	J[149]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	8677.111	-3501.926	8683.719	-3496.144	8670.498	-3507.713	8683.719	30000.000
96	J[149]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8007.848	-2127.792	8014.376	-2122.080	8001.314	-2133.510	-2133.510	-3527.753
97	I[149]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	8679.580	-3498.133	8699.590	-3480.626	8659.556	-3515.655	8699.590	30000.000
97	I[149]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	8010.866	-2123.925	8018.685	-2117.083	8003.040	-2130.772	-2130.772	-3527.753
97	J[160]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	8454.738	-2797.282	8461.335	-2791.511	8448.137	-2803.058	8461.335	30000.000
97	J[160]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	7790.609	-1429.575	7794.215	-1426.420	7787.000	-1432.733	-1432.733	-3527.753
98	I[160]	Girder(Composite)	Compression	Layan I-l	MY-MAX	OK OV	8468.606	-2/97.707	8489.677	-27/9.271	8447.519	-2816.159	8489.677	30000.000
98	I[171]	Girder(Composite)	Compression	Layan I 1	MY-MAV	OF	8049 714	-1428.817	2059 971	-1423.0/4	8038 552	-1433.965	-1433.905	-3527.753
98	J[171]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	7417 773	-400 531	7421 678	-397 114	7413 865	-403 951	-403 951	-3527 753
99	I[171]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	8051.029	-1697.662	8074.768	-1676.891	8027.270	-1718.452	8074.768	30000.000
99	I[171]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	7420.701	-397.477	7426.385	-392.504	7415.012	-402.456	-402.456	-3527.753
99	J[182]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	7432.338	-490.238	7446.086	-478.209	7418.579	-502.277	7446.086	30000.000
99	J[182]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	6870.256	673.751	6874.283	677.274	6866.227	670.225	670.225	-3527.753
100	I[182]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	7421.739	-483.775	7445.397	-463.075	7398.062	-504.494	7445.397	30000.000
100	I[182]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	6863.176	679.881	6866.271	682.589	6860.079	677.172	677.172	-3527.753
100	J[193]	Girder(Composite)	Compression	Layan I-2	MY-MAX	OK	6577.504	984.316	6596.152	1000.632	6558.841	967.985	6596.152	30000.000
100	J[193]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	6118.698	1946.213	6123.754	1950.636	6113.638	1941.785	1941.785	-3527.753
101	I[193]	Girder(Composite)	Compression	Layan I-1	MY-MAX	OK	6582.431	986.175	6608.493	1008.979	6556.349	963.352	6608.493	30000.000
101	I[193]	Girder(Composite)	Tension	Layan III-1	MY-MAX	OK	6124.284	1949.159	6127.853	1952.281	6120.712	1946.033	1946.033	-3527.753
101	J[204]	Girder(Composite)	Compression	Layan I-4	MY-MIN MV MAY	OF	53948.245	0302.538	5207 472	3202 722	5287.002	0284.567	3104 429	30000.000
101	J[204]	Girder(Composite)	Compression	Layan III-I	MV-MIN	OF	3054 447	6305 570	3097 220	6320 057	3076 557	6281.161	6320 057	-3527.753
102	I[204]	Girder(Composite)	Tension	Layan III-1	MY-MAY	OK	5934.447	3196 404	5412 646	3198 598	5407 629	3194 208	3194 208	-3527 753
102	J[215]	Girder(Composite)	Compression	Layan I-4	MY-MIN	OK	3325.857	7372.296	3348.983	7392.530	3302.714	7352.044	7392.530	30000.000
102	J[215]	Girder(Composite)	Tension	Layan III-2	MY-MIN	OK	3305.761	7406.339	3309.665	7409.755	3301.855	7402.920	3301.855	-3527.753
103	I[215]	Girder(Composite)	Compression	Layan I-3	MY-MIN	OK	3316.991	7381.864	3346.061	7407.299	3287.898	7356.406	7407.299	30000.000
103	I[215]	Girder(Composite)	Tension	Layan III-2	MY-MIN	OK	3297.663	7415.996	3299.487	7417.591	3295.839	7414.400	3295.839	-3527.753
103	J[226]	Girder(Composite)	Compression	Layan I-4	MY-MIN	OK	2592.308	8661.406	2618.798	8684.584	2565.797	8638.207	8684.584	30000.000
103	J[226]	Girder(Composite)	Tension	Layan III-1	MY-MIN	OK	2580.545	8674.839	2583.162	8677.128	2577.926	8672.547	2577.926	-3527.753

	Stress Check at service load													
Elam	Dort	Cinden/Clab	Comm /Tono	LCom	Tumo	CUV	FT	FB	FTL	FBL	FTR	FBR	FMAX	ALW
Elem	Fait	Girder/Stab	Comp./ rens.	Name	Type	Спк	(kN/m^2)							
104	I[226]	Girder(Composite)	Compression	Layan I-3	FZ-MIN	OK	1699.137	5993.123	1722.308	6013.398	1675.966	5972.849	6013.398	30000.000
104	I[226]	Girder(Composite)	Tension	Layan III-2	FZ-MIN	OK	1690.240	6006.420	1691.597	6007.607	1688.883	6005.232	1688.883	-3527.753
104	J[6]	Girder(Composite)	Compression	Layan I-1	MZ-MAX	OK	870.142	7287.427	769.895	7199.711	970.388	7375.142	7375.142	30000.000
104	J[6]	Girder(Composite)	Tension	Layan III-1	MZ-MAX	OK	871.132	7284.056	815.703	7235.556	926.560	7332.556	815.703	-3527.753

Elem: Element number

Part: Check location (I-End, J-End) of each element

Comp./Tens.: Compression or Tension Stress

Stage: Construction stage at which stresses are maximum at the corresponding section.

CHK: Combined stress check for construction stages

FT: Combined Stress due to bending moment about major axis (My) and axial force at Top fiber

FB: Combined Stress due to bending moment about major axis (My) and axial force at Bottom fiber

FTL: Combined Stress due to bending moment about major axis (My), minor axis (Mz) and axial force at Top Left fiber

FBL: Combined Stress due to bending moment about major axis (My), minor axis (Mz) and axial force at Bottom Left fiber

FTR: Combined Stress due to bending moment about major axis (My), minor axis (Mz) and axial force at Top Right fiber

FBR: Combined Stress due to bending moment about major axis (My), minor axis (Mz) and axial force at Bottom Right fiber

FMAX: Maximum combined stress out of the above six.

ALW: Allowable stress of cross section at construction stage

	Flexure Strength Check													
Elem	Part	Positive/ Negative	LComName	Туре	СНК	Muy (kN*m)	Mcr (kN*m)	Mny (kN*m)	PhiMny (kN*m)	Ratio (Muy/PhiMny)	PhiMny/ min(1.33Muy,Mcr)			
85	I[5]	Negative	Kuat I-1	MY-MIN	OK	-2673.138	5112.823	5897.118	5897.118	0.453	1.659			
85	I[5]	Positive	Ekstrem I-3	FZ-MAX	OK	0.000	9159.613	14550.826	14550.826	0.000	larger than 100			
85	J[28]	Negative	Ekstrem II-2	FZ-MAX	OK	-1011.609	4539.804	4944.879	4800.824	0.211	3.568			
85	J[28]	Positive	Kuat I-1	MY-MAX	OK	1021.336	9815.010	15584.886	15584.886	0.066	11.473			
86	I[28]	Negative	Ekstrem II-2	MY-MIN	OK	-1433.339	4880.191	4944.615	4804.965	0.298	2.521			
86	I[28]	Positive	Kuat I-1	MY-MAX	OK	578.917	9835.464	15584.886	15584.886	0.037	20.241			
86	J[39]	Negative	Ekstrem II-2	MY-MIN	OK	-49.810	4321.713	4028.469	3629.375	0.014	54.785			
86	J[39]	Positive	Kuat I-1	MY-MAX	OK	3493.904	10513.326	16599.731	16599.731	0.211	3.572			
87	I[39]	Negative	Ekstrem II-2	MY-MIN	OK	-43.538	4321.680	4028.469	3629.375	0.012	62.678			
87	I[39]	Positive	Kuat I-1	MY-MAX	OK	3487.779	10513.856	16599.731	16599.731	0.210	3.579			
87	J[50]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3770.084	3174.770	2639.420	0.000	larger than 100			
87	J[50]	Positive	Kuat I-1	MY-MAX	OK	5778.350	11183.247	17573.917	17573.917	0.329	2.287			
88	I[50]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3770.026	3174.770	2639.420	0.000	larger than 100			
88	I[50]	Positive	Kuat I-1	MY-MAX	OK	5770.376	11183.885	17573.917	17573.917	0.328	2.290			
88	J[61]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3236.774	2403.851	1842.161	0.000	larger than 100			
88	J[61]	Positive	Kuat I-1	MY-MAX	OK	7510.958	11834.544	18486.309	18486.309	0.406	1.851			
89	I[61]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3236.635	2403.851	1842.161	0.000	larger than 100			
89	I[61]	Positive	Kuat I-1	MY-MAX	OK	7512.302	11835.429	18486.309	18486.309	0.406	1.850			
89	J[72]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2736.995	1739.625	1304.719	0.000	larger than 100			
89	J[72]	Positive	Kuat I-1	MY-MAX	OK	9390.817	12444.953	19316.338	19316.338	0.486	1.552			
90	I[72]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2736.812	1739.625	1304.719	0.000	larger than 100			
90	I[72]	Positive	Kuat I-1	MY-MAX	OK	9400.702	12445.862	19316.338	19316.338	0.487	1.552			
90	J[83]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2284.731	1198.631	898.973	0.000	larger than 100			
90	J[83]	Positive	Kuat I-1	MY-MAX	OK	10773.464	13003.270	20041.960	20041.960	0.538	1.541			
91	1[83]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2284.466	1198.631	898.973	0.000	larger than 100			
91	1[83]	Positive	Kuat I-I	MY-MAX	OK	10774.220	13004.359	20041.960	20041.960	0.538	1.541			
91	J[94]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1895./86	/93.48/	595.115	0.000	larger than 100			
91	J[94]	Positive	Kuat I-I	MY-MAX	OK	11030.337	13492./34	20645.196	20643.196	0.564	1.530			
92	1[94]	Desitive	Ekstrem II-2	MY-MIN	OK	11628.005	12404.067	/95.48/	20642-106	0.000	larger than 100			
92	1[94]	Nogativa	Flatrom II 2	MY MIN	OK	0.000	1596.405	522 572	20043.190	0.303	1.330			
92	J[105]	Positive	Kuat I 1	MV MAY	OK	12006 556	13896 580	21008 303	21008 303	0.000	1 518			
92	J[105]	Negative	Ekstrem II-2	MV-MIN	OK	0.000	1586.050	522 572	301 020	0.009	larger than 100			
93	I[105]	Positive	Kuat I-1	MY-MAX	OK	12005 155	13898.072	21098 303	21098 303	0.000	1 518			
93	J[116]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1378 299	375 482	21090.505	0.000	larger than 100			
93	J[116]	Positive	Kuat I-1	MY-MAX	OK	12551 652	14183.066	21386 597	21386 597	0.587	1 508			
94	J[116]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1377 792	375 482	21300.557	0.000	larger than 100			
94	I[116]	Positive	Kuat I-1	MY-MAX	OK	12557 429	14184 696	21386 597	21386 597	0.587	1 508			
94	J[127]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1282.862	329.469	247.102	0.000	larger than 100			
94	J[127]	Positive	Kuat I-1	MY-MAX	OK	12648.849	14351.701	21487.424	21487.424	0.589	1.497			
95	I[127]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1282.238	329.469	247.102	0.000	larger than 100			
95	I[127]	Positive	Kuat I-1	MY-MAX	OK	12646.241	14353.670	21487.424	21487.424	0.589	1.497			
95	J[138]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1312.239	375.482	281.612	0.000	larger than 100			
95	J[138]	Positive	Kuat I-1	MY-MAX	OK	12283.418	14390.459	21386.597	21386.597	0.574	1.486			
96	I[138]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1311.643	375.482	281.612	0.000	larger than 100			
96	I[138]	Positive	Kuat I-1	MY-MAX	OK	12272.972	14392.362	21386.597	21386.597	0.574	1.486			
96	J[149]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1461.718	522.572	391.929	0.000	larger than 100			
96	J[149]	Positive	Kuat I-1	MY-MAX	OK	11471.777	14302.681	21098.303	21098.303	0.544	1.475			
97	I[149]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1461.239	522.572	391.929	0.000	larger than 100			
97	I[149]	Positive	Kuat I-1	MY-MAX	OK	11469.130	14304.282	21098.303	21098.303	0.544	1.475			
97	J[160]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1724.795	793.487	595.115	0.000	larger than 100			
97	J[160]	Positive	Kuat I-1	MY-MAX	OK	10862.546	14085.048	20643.196	20643.196	0.526	1.466			
98	I[160]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	1724.432	793.487	595.115	0.000	larger than 100			
98	I[160]	Positive	Kuat I-1	MY-MAX	OK	10867.475	14086.359	20643.196	20643.196	0.526	1.466			
98	J[171]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2084.631	1198.631	898.973	0.000	larger than 100			
98	J[171]	Positive	Kuat I-1	MY-MAX	OK	9811.691	13765.251	20041.960	20041.960	0.490	1.536			

	Flexure Strength Check												
Elem	Part	Positive/ Negative	LComName	Туре	СНК	Muy (kN*m)	Mcr (kN*m)	Mny (kN*m)	PhiMny (kN*m)	Ratio (Muy/PhiMny)	PhiMny/ min(1.33Muy,Mcr)		
99	I[171]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2084.360	1198.631	898.973	0.000	larger than 100		
99	I[171]	Positive	Kuat I-1	MY-MAX	OK	9808.164	13766.351	20041.960	20041.960	0.489	1.536		
99	J[182]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2552.981	1739.625	1304.719	0.000	larger than 100		
99	J[182]	Positive	Kuat I-1	MY-MAX	OK	8418.243	13255.181	19316.338	19316.338	0.436	1.725		
100	I[182]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	2552.804	1739.625	1304.719	0.000	larger than 100		
100	I[182]	Positive	Kuat I-1	MY-MAX	OK	8406.195	13256.038	19316.338	19316.338	0.435	1.728		
100	J[193]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3094.401	2403.851	1842.161	0.000	larger than 100		
100	J[193]	Positive	Kuat I-1	MY-MAX	OK	6619.706	12611.844	18486.309	18486.309	0.358	2.100		
101	I[193]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3094.333	2403.851	1842.161	0.000	larger than 100		
101	I[193]	Positive	Kuat I-1	MY-MAX	OK	6616.831	12612.334	18486.309	18486.309	0.358	2.101		
101	J[204]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3675.303	3174.770	2639.420	0.000	larger than 100		
101	J[204]	Positive	Kuat I-1	MY-MAX	OK	4975.900	11919.675	17573.917	17573.917	0.283	2.656		
102	I[204]	Negative	Ekstrem II-2	MY-MIN	OK	0.000	3675.279	3174.770	2639.420	0.000	larger than 100		
102	I[204]	Positive	Kuat I-1	MY-MAX	OK	4982.923	11920.022	17573.917	17573.917	0.284	2.652		
102	J[215]	Negative	Ekstrem II-2	MY-MIN	OK	-735.367	4279.148	4028.469	3629.375	0.203	3.711		
102	J[215]	Positive	Kuat I-1	MY-MAX	OK	2795.950	11202.723	16599.731	16599.731	0.168	4.464		
103	I[215]	Negative	Ekstrem II-2	MY-MIN	OK	-742.216	4279.182	4028.469	3629.375	0.205	3.677		
103	I[215]	Positive	Kuat I-1	MY-MAX	OK	2801.498	11202.833	16599.731	16599.731	0.169	4.455		
103	J[226]	Negative	Ekstrem II-2	MY-MIN	OK	-2021.048	4892.798	4944.615	4804.965	0.421	1.788		
103	J[226]	Positive	Kuat I-1	MY-MAX	OK	0.000	10477.063	15584.886	15584.886	0.000	larger than 100		
104	I[226]	Negative	Ekstrem II-2	FZ-MIN	OK	-1525.317	4500.478	4944.879	4800.824	0.318	2.367		
104	I[226]	Positive	Kuat I-1	MY-MAX	OK	507.626	10375.249	15584.886	15584.886	0.033	23.084		
104	J[6]	Negative	Kuat I-1	MY-MIN	OK	-3094.337	5129.744	5897.118	5897.118	0.525	1.433		
104	J[6]	Positive	Ekstrem I-3	FZ-MIN	OK	0.000	9664.788	14550.826	14550.826	0.000	larger than 100		

Elem: Element number

Part: Check location (I-End, J-End) of each element

Positive/Negative: Positive moment, negative moment

LCom. Name: Load combination name.

Type: Displays the set of member forces corresponding to moving load case or settlement load case for which the maximum stresses are produced. If it is not defined then this field is left blank(-)

CHK: Flexural strength check for element

Muy: Factored moment acting at section about y axis

Mcr: Cracking moment of section (Refer to the equation 5.7.3.3.2-1 of AASHTO LRFD (2012).)

Mny: Nominal moment resistance of section about y axis

PhiMny: Design moment resistance of section about y axis

Ratio (Muy/PhiMny): Flexural resistance ratio, The verification is satisfied when it is less than 1.0.

PhiMny/min(1.33Muy,Mcr): Verification of minimum reinforcement. The verification is satisfied when it is less than 1.0. If the verification of minimum reinforcement is not required, it will be displayed as 1.0. (Refer to the clause 5.7.3.3.2 of AASHTO LRFD (2012).)

	Shear Strength Check												
Elem	Part	Max/Min	LCom	Type	CHK	Vu	Mu	Vn	Phi	Vc	Vs	Vp	PhiVn
0.5	1(4)	Mar	Name	EZ MAY	OV	(kN)	(kN*m)	(kN)	0.000	(kN)	(kN)	(kN)	(kN)
85	1[5]	Min	Ekstrem 1-5	FZ-MAA MV MIN	OK	-/95./09	-1542.02/	3805.506	0.900	2859.068	6517.427	254.280	8668 495
85	1[3]	Max	Ekstrem I-3	FZ-MAX	OK	-684 569	-105 531	3806 385	0.900	2859.008	6517.427	255 166	8668 405
85	J[28]	Min	Kuat I-1	MY-MAX	OK	-1810 102	1021 336	9631.661	0.900	2859.068	6517.427	255.166	8668 495
86	I[28]	Max	Ekstrem I-3	FZ-MAX	OK	-659.764	-162.455	1224.142	0.900	1186.513	1629.357	250.565	2756.576
86	I[28]	Min	Kuat I-1	FZ-MIN	NG	-1376.531	-314.385	1224.142	0.900	1186.513	1629.357	250,565	2756.576
86	J[39]	Max	Ekstrem I-3	FZ-MAX	OK	-584.741	1026.457	3062.863	0.900	1186.513	1629.357	246.993	2756.576
86	J[39]	Min	Kuat I-1	MY-MAX	OK	-1534.674	3493.904	3062.863	0.900	1186.513	1629.357	246.993	2756.576
87	I[39]	Max	Ekstrem I-3	FZ-MAX	OK	-551.190	1504.263	3062.882	0.900	1186.513	1629.357	247.012	2756.593
87	I[39]	Min	Kuat I-1	FZ-MIN	OK	-1199.027	1853.515	3062.882	0.900	1186.513	1629.357	247.012	2756.593
87	J[50]	Max	Ekstrem I-3	FZ-MAX	OK	-481.363	2470.775	3138.817	0.900	1222.288	1678.484	238.046	2824.936
87	J[50]	Min	Kuat I-1	MY-MAX	OK	-1277.173	5778.350	3138.817	0.900	1222.288	1678.484	238.046	2824.936
88	I[50]	Max	Ekstrem I-3	FZ-MAX	OK	-362.300	3284.623	3138.841	0.900	1222.288	1678.484	238.069	2824.957
88	I[50]	Min	Kuat I-1	FZ-MIN	OK	-1061.820	4282.227	3138.841	0.900	1222.288	1678.484	238.069	2824.957
88	J[61]	Max	Ekstrem I-3	FZ-MAX	OK	-297.950	3867.971	3269.275	0.900	1283.417	1762.428	223.431	2942.348
88	J[61]	Min	Kuat I-1	MY-MAX	OK	-1034.762	7510.958	3269.275	0.900	1283.417	1762.428	223.431	2942.348
89	I[61]	Max	Ekstrem I-3	FZ-MAX	OK	-321.202	3624.560	3269.303	0.900	1283.417	1762.428	223.459	2942.373
89	I[61]	Min	Kuat I-2	FZ-MIN	OK	-1043.595	5089.175	3269.303	0.900	1283.417	1762.428	223.459	2942.373
89	J[72]	Max	Ekstrem I-3	FZ-MAX	OK	-262.633	4120.435	3380.370	0.900	1338.981	1838.730	202.658	3042.333
89	J[72]	Min	Kuat I-1	MY-MAX	OK	-1091.622	9390.817	3380.370	0.900	1338.981	1838.730	202.658	3042.333
90	I[72]	Max	Ekstrem I-3	FZ-MAX	OK	-184.713	6272.660	3380.395	0.900	1338.981	1838.730	202.683	3042.355
90	I[72]	Min	Kuat I-2	FZ-MIN	OK	-869.162	6473.982	3380.395	0.900	1338.981	1838.730	202.683	3042.355
90	J[83]	Max	Ekstrem I-3	FZ-MAX	OK	-132.252	6490.599	3468.892	0.900	1387.699	1905.632	175.561	3122.003
90	J[83]	Min	Kuat I-1	MY-MAX	OK	-858.965	10773.464	3468.892	0.900	1387.699	1905.632	175.561	3122.003
91	1[83]	Max	Ekstrem I-3	FZ-MAX	OK	-34.351	7455.532	3468.916	0.900	1387.699	1905.632	175.586	3122.025
91	1[83]	Min	Kuat I-2	FZ-MIN	OK	-/15.901	7419.673	3468.916	0.900	1387.699	1905.632	1/5.586	3122.025
91	J[94]	Min	Ekstrem 1-5	FZ-MAA	OK	660.807	/308.49/	2520.961	0.900	1427.994	1960.965	141.901	2922.332
02	J[94]	Max	Flystrem I-3	FZ-MAX	OK	127.028	8256 471	3247.036	0.900	1427.994	1960.965	141.901	2022 332
92	1[94]	Min	Kuat I_2	FZ-MIN	OK	-579 882	8230.471	3530 883	0.900	1427.994	1960.965	141.924	3177 705
92	I[105]	Max	Ekstrem I-3	FZ-MAX	OK	166 204	7843 474	3359 999	0.900	1458 560	2002 939	101 500	3023 999
92	J[105]	Min	Kuat I-2	FZ-MIN	OK	-540,706	9008.812	3562.999	0.900	1458.560	2002.939	101.500	3206.699
93	I[105]	Max	Kuat I-2	FZ-MAX	OK	137.721	8632.853	3359.982	0.900	1458.560	2002.939	101.517	3023.984
93	I[105]	Min	Kuat I-2	FZ-MIN	OK	-565.760	8372.902	3563.016	0.900	1458.560	2002.939	101.517	3206.714
93	J[116]	Max	Kuat I-2	FZ-MAX	OK	169.675	8196.697	3453.353	0.900	1477.946	2029.561	54.154	3108.018
93	J[116]	Min	Kuat I-2	FZ-MIN	OK	-533.806	9343.707	3561.661	0.900	1477.946	2029.561	54.154	3205.495
94	I[116]	Max	Kuat I-2	FZ-MAX	OK	259.075	9040.582	3453.343	0.900	1477.946	2029.561	54.164	3108.009
94	I[116]	Min	Kuat I-2	FZ-MIN	OK	-414.340	8601.744	3561.671	0.900	1477.946	2029.561	54.164	3205.504
94	J[127]	Max	Kuat I-2	FZ-MAX	OK	283.406	8361.791	3523.553	0.900	1484.707	2038.846	0.000	3171.198
94	J[127]	Min	Kuat I-2	FZ-MIN	OK	-390.009	9269.783	3523.553	0.900	1484.707	2038.846	0.000	3171.198
95	I[127]	Max	Kuat I-2	FZ-MAX	OK	384.799	9162.719	3523.553	0.900	1484.707	2038.846	0.000	3171.198
95	I[127]	Min	Kuat I-2	FZ-MIN	OK	-287.463	8442.611	3523.553	0.900	1484.707	2038.846	0.000	3171.198
95	J[138]	Max	Kuat I-2	FZ-MAX	OK	407.018	8233.266	3452.293	0.900	1477.946	2029.561	-55.214	3107.064
95	J[138]	Min	Kuat I-2	FZ-MIN	OK	-265.244	8857.682	3562.721	0.900	1477.946	2029.561	-55.214	3206.449
96	I[138]	Max	Kuat I-2	FZ-MAX	OK	524.844	8951.184	3452.282	0.900	1477.946	2029.561	-55.225	3107.054
96	I[138]	Min	Kuat I-2	FZ-MIN	OK	-174.772	7985.367	3562.732	0.900	1477.946	2029.561	-55.225	3206.459
96	J[149]	Max	Kuat I-2	FZ-MAX	OK	550.993	7738.863	3356.007	0.900	1458.560	2002.939	-105.492	3020.406
96	J[149]	Min	Kuat I-2	FZ-MIN	OK	-148.624	8172.280	3566.991	0.900	1458.560	2002.939	-105.492	3210.292
97	I[149]	Max	Kuat I-2	FZ-MAX	OK	525.326	8354.174	3355.988	0.900	1458.560	2002.939	-105.511	3020.389
97	I[149]	Min	Kuat I-2	FZ-MIN	OK	-177.161	7353.688	3567.009	0.900	1458.560	2002.939	-105.511	3210.309
97	J[160]	Max	Kuat I-2	FZ-MAX	OK	555.772	7139.527	3238.597	0.900	1427.994	1960.965	-150.362	2914.738
97	J[160]	Min	Kuat I-2	FZ-MIN	OK	-146.714	7544.015	3539.321	0.900	1427.994	1960.965	-150.362	3185.389
98	1[160]	Max	Kuat I-2	FZ-MAX	OK	644.500	/808.988	3238.575	0.900	1427.994	1960.965	-150.384	2914.718
98	1[160]	Min	Kuat I-2	FZ-MIN	OK OV	-29.932	6625.112	3539.343	0.900	1427.994	1960.965	-150.384	3185.409
98	[J[1/1]	wiax	rsual I-2	ΓΖ-ΙΝΙΑΧ		0/9.394	0333.847	5105.627	0.900	138/.099	1905.632	-189./04	2193.204

	Shear Strength Check														
	I Com Vu Mu Vn Vc Vs Vn PhiVn														
Elem	Part	Max/Min	LCom Name	Туре	CHK	Vu (kN)	Mu (kN*m)	Vn (kN)	Phi	Vc (kN)	Vs (kN)	Vp (kN)	PhiVn (kN)		
98	J[171]	Min	Ekstrem II-2	FZ-MIN	OK	5.162	6520.835	3103.627	0.900	1387.699	1905.632	-189.704	2793.264		
99	I[171]	Max	Kuat I-1	MY-MAX	OK	830.846	9808.164	3103.603	0.900	1387.699	1905.632	-189.728	2793.243		
99	I[171]	Min	Ekstrem II-2	FZ-MIN	OK	104.133	5525.299	3103.603	0.900	1387.699	1905.632	-189.728	2793.243		
99	J[182]	Max	Kuat I-2	FZ-MAX	OK	823.678	5397.144	2956.439	0.900	1338.981	1838.730	-221.273	2660.795		
99	J[182]	Min	Ekstrem II-2	FZ-MIN	OK	148.713	5290.201	2956.439	0.900	1338.981	1838.730	-221.273	2660.795		
100	I[182]	Max	Kuat I-1	MY-MAX	OK	1055.502	8406.195	2956.416	0.900	1338.981	1838.730	-221.296	2660.774		
100	I[182]	Min	Ekstrem II-2	FZ-MIN	OK	233.452	4316.569	2956.416	0.900	1338.981	1838.730	-221.296	2660.774		
100	J[193]	Max	Kuat I-2	FZ-MAX	OK	992.833	4114.015	2801.266	0.900	1283.417	1762.428	-244.579	2521.139		
100	J[193]	Min	Ekstrem II-2	FZ-MIN	OK	288.458	3898.868	2801.266	0.900	1283.417	1762.428	-244.579	2521.139		
101	I[193]	Max	Kuat I-1	MY-MAX	OK	994.624	6616.831	2801.249	0.900	1283.417	1762.428	-244.596	2521.124		
101	I[193]	Min	Ekstrem II-2	FZ-MIN	OK	257.812	2973.844	2801.249	0.900	1283.417	1762.428	-244.596	2521.124		
101	J[204]	Max	Kuat I-1	FZ-MAX	OK	1019.300	3487.751	2639.570	0.900	1222.288	1678.484	-261.202	2375.613		
101	J[204]	Min	Ekstrem II-2	FZ-MIN	OK	319.780	2490.147	2639.570	0.900	1222.288	1678.484	-261.202	2375.613		
102	I[204]	Max	Kuat I-1	MY-MAX	OK	1234.549	4982.923	2639.556	0.900	1222.288	1678.484	-261.216	2375.601		
102	I[204]	Min	Ekstrem II-2	FZ-MIN	OK	438.739	1675.347	2639.556	0.900	1222.288	1678.484	-261.216	2375.601		
102	J[215]	Max	Kuat I-1	FZ-MAX	OK	1142.720	1113.141	2544.243	0.900	1186.513	1629.357	-271.627	2289.818		
102	J[215]	Min	Ekstrem II-2	FZ-MIN	OK	507.326	812.434	2544.243	0.900	1186.513	1629.357	-271.627	2289.818		
103	I[215]	Max	Kuat I-1	MY-MAX	OK	1490.720	2801.498	2544.234	0.900	1186.513	1629.357	-271.636	2289.810		
103	I[215]	Min	Ekstrem II-2	FZ-MIN	OK	592.609	112.771	2544.234	0.900	1186.513	1629.357	-271.636	2289.810		
103	J[226]	Max	Kuat I-1	FZ-MAX	NG	1319.051	-927.733	697.324	0.900	1186.513	1629.357	-276.253	2289.810		
103	J[226]	Min	Ekstrem II-2	FZ-MIN	OK	667.479	-1075.055	697.324	0.900	1186.513	1629.357	-276.253	2289.810		
104	I[226]	Max	Kuat I-1	MY-MAX	OK	1770.314	507.626	9095.716	0.900	2859.068	6517.427	-280.779	8186.144		
104	I[226]	Min	Ekstrem II-2	FZ-MIN	OK	718.099	-1525.317	3270.441	0.900	2859.068	6517.427	-280.779	8186.144		
104	J[6]	Max	Kuat I-1	MY-MIN	OK	1795.292	-3094.337	3271.033	0.900	2859.068	6517.427	-280.187	8186.144		
104	J[6]	Min	Ekstrem II-2	FZ-MIN	OK	828.101	-3016.513	3271.033	0.900	2859.068	6517.427	-280.187	8186.144		

Elem: Element number

Part: Check location (I-End, J-End) of each element

Max./Min.: Maximum shear, minimum shear

LCom. Name: Load combination name.

Type: Displays the set of member forces corresponding to moving load case or settlement load case for which the maximum stresses are produced. If it is not defined then this field is left blank(-)

CHK: Shear strength check for element

Vu: Factored shear force at section

Mu: Factored moment at section

Vn: Nominal shear resistance at section. The nominal shear resistance, Vn, shall be determined as the lesser of (refer to the clause 5.8.3.3 of AASHTO LRFD12):

Phi: Resistance factor for shear, Phi = 0.9

Vc: Nominal shear resistance of concrete. (refer to the equation 5.8.3.3-3 of AASHTO LRFD12)

Vs: Shear resistance provided by transverse (shear) reinforcement.

Vp: shear resistance component in the direction of the applied shear of the effective prestressing force. In midas Civil, shear resistance due to prestressing force, Vp, includes primary prestress force. The secondary effects from prestressing shall be included in the design shear force obtained from the load combinations.

PhiVn: Factored shear resistance. For shear strength reduction factor, Φ =0.9

Design Condition

─.				
	Design Code	Element	Section	Section
	AASHTO-LRFD2017	95	I	Composite

Section Properties

- Gross section

		Before	After
Н	(mm)	2100.00	2350.00
В	(mm)	800.00	2000.00
C_{zp}	(mm)	1065.84	664.73
C_{zm}	(mm)	1034.16	1435.27
C_{zps}	(mm)		914.73
C_{zms}	(mm)		664.73
A_g	(mm²)	8.353.E+05	1.260.E+06
l _y	(mm⁴)	4.397.E+11	8.409.E+11
St	(mm³)	4.125.E+08	6.615.E+08
S _b	(mm³)	4.252.E+08	3.064.E+08
Sts	(mm³)		9.193.E+08
S _{bs}	(mm³)		1.265.E+09

- Transformed section											
		Before	After								
н	(mm)	2100.00	2350.00								
В	(mm)	800.00	2000.00								
C _{zp}	(mm)	1094.93	692.92								
C _{zm}	(mm)	1005.07	1407.08								
C _{zps}	(mm)		942.92								
C _{zms}	(mm)		692.92								
Ag	(mm²)	8.632.E+05	1.287.E+06								
l _y	(mm⁴)	4.617.E+11	8.872.E+11								
St	(mm³)	4.216.E+08	6.663.E+08								
S _b	(mm³)	4.593.E+08	3.281.E+08								
S _{ts}	(mm³)		8.918.E+08								
S _{bs}	(mm³)		1.214.E+09								

Materials

- Concrete

	f _c (MPa)	E _c (MPa)	f _r =0.20√f' _c (MPa)	β1
Girder	50.000	4786.2	4.456	0.687
Slab	30.000	4061.1	3.452	0.832

* β_1 : 0.85 if f'c is lower than 4ksi, the others are 0.85-0.05(f'c-4.0) \ge 0.65

- Prestressing steel information

No.	Tondon	Pond Type	d _p	A _{ps}	Strength	(MPa)	E _p
	Tendon	вопа туре	(mm)	(mm²)	f _{py}	f _{pu}	(MPa)
1	S_G3 - T1	Bond	2150.000	1875.490	1674.000	1860.000	196500.644
2	S_G3 - T2	Bond	2250.000	1875.490	1674.000	1860.000	196500.644
3	S_G3 - T3	Bond	2250.000	1875.490	1674.000	1860.000	196500.644

* d_p : Distance from extreme compression fiber to centroid of prestressing tendon.

- Longitudinal non prestressed steel reinforcement information

Girder		Slab		Bottom for	or Flexure	Top for	Flexure	Torsion
Es	fy	Es	fy	ds	As	ds	As	A _l
(MPa)	(MPa)	(MPa)	(MPa)	(mm)	(mm²)	(mm)	(mm²)	(mm²)
199948.0	413.69	199948.0	413.69	0.00	0.00	0.00	0.00	0.00

* $d_s \parallel d'_s$: Distance from extreme compression fiber to centroid of non prestressing reinforcement.

- Transverse non prestressed steel reinforcement information

			Sh	ear	Tor	sion
Es	f _y	α	A _v	S	A _t	s _t
(MPa)	(MPa)	(deg.)	(mm²)	(mm)	(mm²)	(mm)
199948.0	413.686	90.000	258.064	200.000	0.000	0.000

 α : Angle between longitudinal and stirrup.

Sectional forces/stresses due to effective prestress

No.	Tendon Name	Bond Type	e _p (mm)	A _{ps} f _{e(z-dir)} (kN)	A _{ps} f _{e(x-dir)} (kN)	A _{ps} f _{e(x-dir)} e _p (kN⋅m)
1	S_G3 - T1	Bond	-1207.078	0.000	1913.108	2309.271
2	S_G3 - T2	Bond	-1307.078	0.000	1924.041	2514.872
3	S_G3 - T3	Bond	-1307.078	0.000	1934.843	2528.991
			Σ	0.000	5771.992	7353.134

Code

Kuat I-1

12646.240

(kN·m)

* e_p : Distance from centroid of section to centroid of tendon

(M_u) :

2.Flexure design for a section

Moment Direction Positive

- Method of Calculation :
- The maximum strength limit load combination :
- The maximum factored moment
- 1) Depth of neutral axis to compression face

Axial force in concrete (compressive zone):										
c $a=\beta_1c$ A_c a_c $C_c = 0.85$ f_cA_c $C_c(c-a_c)$										
239.246	199.158	398316.880	99.579		10157.080	1418.603				

Axial force in reinforcement steels							
tensile	e zone	compressive zone					
T _s =A _s f _s	$\Sigma A_s f_s (d_s - c)$	C _s =A' _s f' _s	ΣA'sf's(c-d's)				
0.000	0.000	0.000	0.000				

No	Axial force in tendons(Bond) by Code										
NO.	Tendon Name	k	f _{ps}	$T_{ps}=A_{ps}f_{ps}$	$A_{ps}f_{ps}(d_p-c)$						
1	S_G3 - T1	0.280	1802.047	3379.721	6457.817						
2	S_G3 - T2	0.280	1804.623	3384.552	6805.502						
3	S_G3 - T3	0.280	1804.623	3384.552	6805.502						
			10148.824	20068.821							

* $f_{ps} = f_{pu}(1-k c/d_p)$ k = $2(1.04-f_{py}/f_{pu})$

o (mm)	Compressio	n Force (kN)	Tensile Fo	Tolerance	
c (mm)	C _c	Cs	T _s	T _{ps}	(C/T)
239.246	10157.080	0.000	0.000	10148.824	1.00081

2	2) FI	exural	resist	ance										
	-	Nom	inal re	sistance	((Mn).								(See 5.6.3.2)
		$\mathbf{M}_{\mathbf{n}}$	= ΣΑ,	sf _s (d _s -c)+	ΣA _{ps}	f _{ps} (d _p -c)+C _o	_c (c-a _c)+Σ	A' _s f' _s (c	-d' _s) =	=	21	487.42	(kN∙m)	
		Resi	stance	factor	((Φ).								
		dt	=	2250.0	000 ((mm)								
		ε _t	= 0.0	03(d _t /c-1)	=	0.0252	: N	let ter	nsile str	rain in the	extreme	tension ste	el
		Φ	=	1.00		: Te	ension Co	ontroll	ed Ra	nge,		0.00	$5 \leq \epsilon_t$	
	-	Facto	ored re	sistance	;	(M _r = Φ	M _n)							
		$M_{\rm r}$	=	21487.4	24	(kN∙m)	\geq	Μ	u =	12	2646.24	(kN·m))	ОК
:	3) M	inimun	n reinf	orceme	nt									
	-	IDS_	CVL_I	RPT_US	_133	MU : 미등 특	록 문자열							(See 5.6.3.3)
		$M_{\rm r}$	=	21487.4	24	(kN∙m)	≥	1.3	33M _u	=	16819.	50 (ki	l·m)	
		Crac	king m	oment	((M _{cr})								(Eq. 5.7.3.3.2-1)
		M_{cr}	=	Y3 [(γ₁·f _r	+ $\gamma_2 \cdot f_{cpe})S_c$	- M _{dnc} (S	_c /S _{nc} -1)]	=	119	918.13	(kN∙m)
		V	Vhere,	M _{dnc}	=	6.444.E	+03 (k	(N∙m)	:	Non-C	omposite	dead loa	nd moment	
				Sc	=	5.859.E	+08 (mm	³)	:	Compo	osite Sec	tion Modu	lus for extre	eme fiber
				S _{nc}	=	4.252.E	+08 (mm	1³)	:	Non-C	omposite	Section	Modulus for	extreme fiber
				Y 1	=	1.2	200		:	Flexura	al crackin	g variabi	lity factor	
				Y ₂	=	1.1	00		:	Prestre	ess varial	oility facto	or	
				Y ₃	=	1.0	000		:	Ratio c reinfor	of yield st cement	rength to	ultimate ten	sile strength of the
				f _{cpe} =	Com	pressive st	tress in c	oncrei	e due	to effe	ctive pre	stress on	lv	
				=	ΣA_{ps}	, f _{e(x-dir)} / A _g	+ ΣA _p	₅·f _{e(x-dir})∙e _p / S	S _b =	·	17.41 (kN)	
	-	Chec	king n	ninimum	reinf	orcement								
		M _r	=	21487.	.42	(kN∙m)	\geq	M	_{er} =	11	1918.13	(kN·m)		OK
3.Sł	near	desig aximu	gn fo Im Sh	r a sec ear	tior	ı								
	- Se	ection t	ype	: Sec	men	tal-Solid								
	- Tł	ne Strei	ngth Li	mit Load	d Cor	nbination	:	Kuat I	-2					
	- Fa	actored	shear	force		:	V	=	:	384.80	(kN)		(includir	na Vp)
	- Fa	actored	mome	ent	:		M,	=	9	162.72	(kN·m)		、 -	5 17
	- Fa	actored	axial	orce	:		N,	=	-5	790.57	(kN)			
	- R	esistan	ce fact	or for sh	ear	:	Φ	=	0.90		. /			
	- C	ompone	ent of	orestress	sina f	orce in	,							
	di	rection	of the	shear fo	rce	0.00 11	V_{p}	= Σ/	A _{ps} ∙f _{e(z}	-dir) =		0.00 (kN)	

1) Effective depth

$$\begin{split} \epsilon_{s} &= \frac{(1 - \alpha)^{2} + (1 - \alpha)^{2} + ($$

5) Component of shear resisted by tensile stresses in concrete (V_c) - Factor indicating diagonally cracked concrete to transmit tension (β). $\beta = \frac{4.8}{(1+750\varepsilon_s)} =$ 4.800 $\therefore A_v \ge A_{v,min}$ (Eq. 5.7.3.4.2-1) Nominal shear resistance provide by concrete $V_{c} = 0.0316 \beta \sqrt{f'_{c} b_{v} d_{v}} =$ 1484.707 (kN) (Eq. 5.7.3.3-3) 6) Component of shear resisted by transverse reinforcement (V_s) Area of transverse reinforcement required (See 5.8.2.4) $0.5\Phi(V_{c}+V_{p})$ $\Phi(V_c+V_p)$ Vu 668.12 (kN) 1336.24 (kN) 384.80 (kN) $V_{u} < 0.5 \Phi (V_{c} + V_{p})$ ∴ No Shear reinforcing Component of shear resisted by transverse reinforcement (V_s) $V_{s} = \frac{A_{v} \cdot f_{y} \cdot d_{v}(\cot\theta + \cot\alpha) \sin\alpha}{-}$ - = 2038.846 (kN) s (Eq. 5.7.3.3-4) 29+3500ε_s 29.000 (deg.) (Eq. 5.7.3.4.2-3) Where, $\theta =$ = 90.000 (deg.) α = 7) Shear resistance Nominal shear strength (Eq. 5.7.3.3-1) $V_c + V_s + V_p = 3523.553 (kN) \le 0.25 \cdot f'_c b_v d_v + V_p =$ 6589.887 (kN) \therefore V_n = V_c+V_s+V_p 3523.553 (kN) = Factored shear resistance (V_r). $\therefore V_r = \Phi V_n = | 3171.198 | (kN)$ $\geq V_u = 384.799$ (kN) οκ Minimum Shear - Section type : Segmental-Solid : Kuat I-2 - The Strength Limit Load Combination - Factored shear force • V_u = -287.46 (kN) (including Vp) 8442.61 (kN·m) - Factored moment M_u = - Factored axial force N_u = -5788.88 (kN) : Φ = 0.90 - Resistance factor for shear : - Component of prestressing force in direction of the shear force $V_p = \Sigma A_{ps} \cdot f_{e(z-dir)} =$ 0.00 (kN) 1) Effective depth C A à ţc. Neutral axis d_ d h T

$$b_v = 249.00 \text{ (mm)}$$
 Effective web width

$$d_e = \frac{A_{ps}f_{ps}d_p + A_sf_sd_s}{A_{ps}f_{ps} + A_sf_s} = 2216.698 \text{ (mm)}$$
 Effective depth for bending

$$d_v = \text{Max}\left[\frac{M_n}{A_{ps}f_{ps} + A_sf_s}, 0.9d_e, 0.72h\right]$$
 Effective depth for shear

$$= \text{Max}\left[2117.233, 1995.029, 1692.000\right]$$

$$= 2117.233 \text{ (mm)}$$

2) Maximum Spacing for transverse reinforcement (s_{max})

• Shear stress on concrete
$$(v_u)$$
.
 $v_u = \frac{|V_u - \Phi V_p|}{\Phi b_v d_v} = 0.606 \text{ (MPa)}$ (Eq. 5.7.2.8-1)

• Maximum Spacing for transverse reinforcement
$$(s_{max})$$

$$v_u = 0.006 \text{ (MPa)} < 0.1251 \text{ c} = 6.250 \text{ (MPa)}$$

 $\therefore s_{max} = \text{Min}[0.8d_v, 24.0(in.)] = 609.600 \text{ (mm)}$ (Eq. 5.7.2.6-1)

ΟΚ

$$\therefore$$
 s = 200.000 (mm) \leq s_{max}

3) Minimum required transverse reinforcement (A_{v,min})
 Need Not Check

4) Longitudinal Strain (ϵ_s)

5) Component of shear resisted by tensile stresses in concrete (V_c)

Factor indicating diagonally cracked concrete to transmit tension (β).

$$\beta = \frac{4.8}{(1+750\epsilon_{s})} = 4.800 \quad \because A_{v} \ge A_{v,min} \quad (Eq. 5.7.3.4.2-1)$$

• Nominal shear resistance provide by concrete $V_c = 0.0316 \beta \sqrt{f'_c b_v d_v} = 1484.707 (kN)$ (Eq. 5.7.3.3-3)

6)	Component of shear resisted by	transverse reinforcement	(V _s)	
	 Area of transverse reinforceme 	nt required		(See 5.8.2.4)
	$0.5\Phi(V_{c}+V_{p})$	$\Phi(V_c+V_p)$	Vu	
	668.12 (kN)	1336.24 (kN)	287.46 (kN	1)
	$V_{u} < 0.5 \Phi (V_{c} + V_{p})$	∴ No Shear reinforcing		
	• Component of shear resisted b $V_{s} = \frac{A_{v} \cdot f_{y} \cdot d_{v}(\cot\theta + \cot\alpha) \sin \theta}{s}$ Where, $\theta = 29+3500$ $\alpha = 90$.	y transverse reinforcement $\frac{n\alpha}{r} = 2038.846 \text{ (kN)}$ $\lambda \epsilon_s = 29.000 \text{ (deg.)}$ 000 (deg.)	(V _s)	(Eq. 5.7.3.3-4) (Eq. 5.7.3.4.2-3)
7)	Shear resistance • Nominal shear strength $V_c + V_s + V_p = 3523.553$ ∴ $V_n = V_c + V_s + V_p =$	$(kN) \leq 0.25 \cdot f_c b_v d_v + V_p =$ 3523.553 (kN)	6589.887 (kN)	(Eq. 5.7.3.3-1)
	• Factored shear resistance $\therefore V_r = \Phi V_n = $ 3171.	(V_r) . 198 $ (kN) \ge V_u = $ -287	′.463 (kN)	ок

3D-View of Bridge Substructure and Foundation

Bridge Substructure and Foundation Deformation

	Eigenvalue Mode											
N 1	TI	v	T	V	T	7	D	v	D	V	D7	
Mode	U	Λ	U	Y	LGENV				R	Y	R	L
Mode		Frequ	lency	L	Der	riod	INALIS	1.5				
No	(rad)	(sec)	(cycle	e/sec)	(56	20)	Tole	rance				
110	7.15	268	1.13	838	0.87	0.87844		E+00				
2	7.24	231	1.15	265	0.86	5757	0.000	E+00				
3	11.7	8808	1.87	613	0.53	3301	0.000	E+00				
4	17.4	0531	2.77	014	0.36	5099	0.000	E+00				
5	21.4	8306	3.41	914	0.29	9247	0.000	E+00				
6	66.0	1087	10.5	0596	0.09	9518	0.000	E+00				
7	70.4	8417	11.2	1790	0.08	3914	0.000	E+00				
8	80.7	1461	12.8	4613	0.07	7784	0.000	E+00				
9	131.7	2099	20.9	6405	0.04	1770	1.626	6E-65				
10	137.9	4103	21.9	5400	0.04	1555	2.072	2E-61				
11	142.2	9818	22.64	4746	0.04	1416	8.658	3E-60				
12	166.0	4755	26.42	2729	0.03	3784	2.430)E-50				
36.1				MOD	AL PARTIC	IPATION M	ASSES PRI	NTOUT			D.O.T.	
Mode	TRA	N-X	TRA	N-Y	TRA	AN-Z	ROI	N-X	ROT	N-Y	ROI	N-Z
No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	100.00	100.00	99.98	99.98	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
2	100.00	100.00	0.00	99.98	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
3	0.00	100.00	0.00	99.98	77.60	77.60	0.00	0.01	0.00	0.00	99.99	99.99
	0.00	100.00	0.00	99.98	//.00	77.60	77.76	0.01	0.00	0.00	0.00	00.00
6	0.00	100.00	0.01	99.99	0.00	77.60	0.00	77.77	55.69	55.69	0.00	99.99
7	0.00	100.00	0.00	99.99	0.00	77.60	0.00	77 77	0.00	55.69	0.00	100.00
8	0.00	100.00	0.00	100.00	0.00	77.60	0.06	77.83	0.00	55.69	0.00	100.00
9	0.00	100.00	0.00	100.00	0.00	77.60	0.00	77.83	0.00	55.69	0.00	100.00
10	0.00	100.00	0.00	100.00	10.09	87.69	0.00	77.83	0.00	55.69	0.00	100.00
11	0.00	100.00	0.00	100.00	0.00	87.69	10.16	87.99	0.00	55.69	0.00	100.00
12	0.00	100.00	0.00	100.00	0.00	87.69	0.00	87.99	0.00	55.69	0.00	100.00
Mode	TRA	N-X	TRA	N-Y	TRA	N-Z	ROT	N-X	ROT	'N-Y	ROT	'N-Z
No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
1	0	0	731.91	731.91	0	0	0.48	0.48	0	0	0	0
2	732.08	732.08	0	731.91	0	0	0	0.48	0.81	0.81	0	0
3	0	732.08	0	731.91	0	0	0	0.48	0	0.81	111633.32	111633.32
4	0	732.08	0	731.91	568.06	568.06	0	0.48	0	0.81	0	111633.32
5	0	732.08	0.07	731.98	0	568.06	4491.71	4492.19	0	0.81	0	111633.32
6	0.01	732.08	0	731.98	0	568.06	0	4492.19	58949.99	58950.8	0	111633.32
7	0	732.08	0	731.98	0	568.06	0	4492.19	0.01	58950.81	1.87	111635.19
8	0	732.08	0.1	732.08	0	568.06	3.71	4495.9	0	58950.81	0	111635.19
9	0	732.08	0	732.08	0	568.06	0	4495.9	0	58950.81	3.15	111638.34
10	0	732.08	0	732.08	73.88	641.94	0	4495.9	0	58950.81	0	111638.34
11	0	732.08	0	732.08	0	641.94	586.7	5082.6	0	58950.81	0	111638.34
12	0	/32.08	0	/32.08	0	641.94	0	5082.6	0	58950.81	0	111638.34

	INTERNAL FORCE PER UNIT LENGTH OF SUBSTRUCTURE												
	Fxx	Fyy	Fxy	Mxx	Муу	Mxy	Vxx	Vyy					
	(kN/m)	(kN/m)	(kN/m)	(kN*m/m)	(kN*m/m)	(kN*m/m)	(kN/m)	(kN/m)					
				Breast wall									
MAX	428.043	580.777	816.057	192.998	699.099	148.108	316.681	261.468					
MIN	-325.934	-1595.589	-253.993	-332.053	-191.004	-74.736	-307.689	-108.269					
Back Wall													
MAX	589.822	194.898	137.829	64.752	360.989	55.647	63.321	241.336					
MIN	-453.462	-258.169	-89.232	-82.288	-174.796	-55.647	3.157	-241.336					
				Wing Wall									
MAX	258.827	546.766	416.995	70.98	132.427	94.541	82.301	61.36					
MIN	-260.178	-992.014	-378.991	-123.109	-69.643	-94.541	-72.723	-110.527					
			A	Approch Sla	b								
MAX	68.784	248.69	60.632	26.461	60.807	49.305	82.301	61.36					
MIN	-46.254	-214.945	-49.788	-70.227	-79.311	-49.305	-72.723	-110.527					
				Pile Cap									
MAX	248.285	389.812	353.046	70.98	332.427	94.541	82.301	61.36					
MIN	-471.7	-307.822	-148.539	-133.109	-69.643	-94.541	-72.723	-110.527					

(a) Force per unit length due to in-plane actions at the output locations

(b) Moments per unit length due to out-of plane bending actions at the output locations

INTERNAL FORCE OF PILE FOUNDATION											
	Axial (kN)	Shear-x (kN)	Shear-y (kN)	Torsion (kN*m)	Moment-x (kN*m)	Moment-y (kN*m)					
			Pile								
MAX	1233.24	574.68	198.79	0	714.75	857.36					
MIN	-1886.38	-15.32	-113.94	0	-364.46	-63.22					

7 [r.	
	DEPARTMENT OF CIVIL EL FACULTY OF ENGINI ANDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED BY	
	MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT	Sc, Ph.d
	PRESTRESSED CONCRE	TE BRIDGE
	DESIGN BY AFDHIL	
	DROJECT TITLE	SCALE
	PROJECT TITLE	SCALE
	3D Structure	NTS
	PROJECT TYPE : STRUCTURE	PAGE / TOTAL PAGE
	DATE :	1 / 8
	L	

7	DEPARTM FACI AI	ENT OF CIVIL E ULTY OF ENGINE NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
		LEGEND	
		CHECKED BY	
		CHECKED BY	Sc, Ph.d
	 	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122	Sc, Ph.d 2001
	MA	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT	Sc, Ph.d 2001
	PRESTRE	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 2001 ETE BRIDGE
	MA	CHECKED BY SRILAYANTI, S.T. M. NIP . 197512192001122 PROJECT SSED CONCRE	<u>Se, Ph.d</u> 2001 ETE BRIDGE
	PRESTRE DESIGN BY ID NUMBER	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Sc, Ph.d 2001 ETE BRIDGE
	PRESTRE DESIGN BY ID NUMBER PROJ	CHECKED BY SSRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Sc, Ph.d 2001 ETE BRIDGE SCALE
	PRESTRE DESIGN BY ID NUMBER PROJ Layo	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE out View	Sc, Ph.d 2001 ETE BRIDGE SCALE 1 : 250
	PRESTRE DESIGN BY ID NUMBER PROJ Layce PROJECT TYPE :	CHECKED BY SSRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE put View STRUCTURE	Sc, Ph.d 2001 ETE BRIDGE SCALE 1 : 250 PAGE / TOTAL PAGE

3D Modeling of Bridge Superstructure

DEPARTM FAC	ENT OF CIVIL EI ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED BY	
MA	ASRILAYANTI, S.T, M.	Sc, Ph.d
	PROJECT	<u></u>
PRESTRE	SSED CONCRE	ETE BRIDGE
DESIGN BY	AFDHIL	
PROJ	ECT TITLE	SCALE
3D Mode Super	ling of Bridge rstructure	
PROJECT TYPE :	STRUCTURE	PAGE / TOTAL PAGE
DATE :	51K - 05	3 / 8

DEPARTM FACI AI	ENT OF CIVIL EN ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED DV	
	CHECKED BY	
	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCEP	Sc, Ph.d 001
	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 001 TE BRIDGE
PRESTRE DESIGN BY ID NUMBER	CHECKED BY SRILAYANTI, S.T, M.S NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Se, Ph.d 001 TE BRIDGE
PRESTRE DESIGN BY ID NUMBER PROJ	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Sc, Ph.d 001 TE BRIDGE SCALE
MA PRESTRE DESIGN BY DNUMBER PROJ Cross - S	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE Section View	Sc, Ph.d 001 TE BRIDGE SCALE 1 : 60
MA PRESTRE DESIGN BY ID NUMBER PROJ Cross - S PROJECT TYPE :	CHECKED BY SRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE Section View STRUCTURE	Se, Ph.d 001 TE BRIDGE SCALE 1 : 60 PAGE / TOTAL PAGE

DEPARTM FAC A	ENT OF CIVIL EI ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED BY	
PRESTRE	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 001 TE BRIDGE
MA	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL	Se, Ph.d 001 TTE BRIDGE
PRESTRE DESIGN BY ID NUMBER	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Se, Ph.d 001 TE BRIDGE
MA	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Se, Ph.d 001 CTE BRIDGE SCALE
MA	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE a of PCI Girder	Sc, Ph.d 001 CTE BRIDGE SCALE 1 : 25
MA	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE 1 of PCI Girder STRUCTURE	Se, Ph.d 001 CTE BRIDGE SCALE 1 : 25 PAGE / TOTAL PAGE

d	DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING ANDALAS UNIVERSITY PADANG 2024
	LEGEND
	CHECKED BY
	<u>MASRILAYANTI, S.T, M.Sc, Ph.d</u> <u>NIP . 197512192001122001</u> PROJECT
	PRESTRESSED CONCRETE BRIDGE
	DESIGN BY AFDHIL
	ID NUMBER 2110922064
	PROJECT TITLE SCALE
	3D Modeling of Bridge Substructure
	PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE
	PROJECT TYPE : STR - 06 6 / 8
	DATE : 0 / 0

	DEPARTM FACI AI	ENT OF CIVIL EI ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
		LEGEND	
-		CHECKED BY	
	MA	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT	Sc, Ph.d_ 001
	PRESTRE	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Se, Ph.d 001 TE BRIDGE
	MA PRESTRE DESIGN BY	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 001 CTE BRIDGE
	MA PRESTRE DESIGN BY ID NUMBER	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Sc, Ph.d 001 TE BRIDGE
	MA PRESTRE DESIGN BY ID NUMBER PROJ	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Se, Ph.d 001 CTE BRIDGE SCALE
	MA PRESTRE DESIGN BY ID NUMBER PROJ Dimension	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE of Substructure	Sc, Ph.d 001 CTE BRIDGE SCALE 1 : 100
	MA PRESTRE DESIGN BY ID NUMBER PROJ Dimension PROJECT TYPE :	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE of Substructure STRUCTURE	Se, Ph.d 001 CTE BRIDGE SCALE 1 : 100 PAGE / TOTAL PAGE

DEPARTM FACI AI	ENT OF CIVIL EI ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED BY	
	SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT	Sc, Ph.d 001
PRESTRE	SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 001 CTE BRIDGE
PRESTRE DESIGN BY	SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 001 TE BRIDGE
PRESTRE DESIGN BY ID NUMBER	ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Sc, Ph.d_ 001 CTE BRIDGE
PRESTRE DESIGN BY ID NUMBER PROJ Pile F	SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE oundation	Sc, Ph.d 001 CTE BRIDGE SCALE As
PRESTRE DESIGN BY ID NUMBER PROJ Pile F	ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE oundation	Sc, Ph.d 001 TE BRIDGE SCALE As indicated
PRESTRE DESIGN BY ID NUMBER PROJECT TYPE : PROJECT TYPE : PROJECT TYPE :	SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE oundation STRUCTURE STR - 08	Sc, Ph.d 001 CTE BRIDGE SCALE As indicated PAGE / TOTAL PAGE

	DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING ANDALAS UNIVERSITY PADANG 2024
	CHECKED BY
1	MASKILA YAN H, S. I, M.SC, Ph.d NIP . 197512192001122001
Ø12.7 mm	PROJECT
2 Ø12.7 mm	PRESTRESSED CONCRETE BRIDGE
	DESIGN BY AFDHIL
3	ID NUMBER 2110922064
Ø12.7 mm	PROJECT TITLE SCALE Tenden Layout of PCL Cirder As
	indicated
——	PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE
	DATE : 1 / 13

	DEPARTM FACI AI	ENT OF CIVIL EN ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
)			
v (Male)			
(Famale)			
		OUFOVER DY	
onnector		CHECKED BY	
		ISKILAYANTI, S.T, M. NIP . 197512192001122	<u>Sc, Ph.d</u> 001
	ррестре	PROJECT	
	DESIGN BY		
	ID NUMBER	2110922064	
	PROJ	ECT TITLE	SCALE
dor	Reinforcen PCI-Girder	nent Details of Segment 1 & 5	As indicated
	PROJECT TYPE :	STRUCTURE	PAGE / TOTAL PAGE
	PROJECT TYPE :	DTL - 02	2/13
	DATE :		

	DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING ANDALAS UNIVERSITY PADANG 2024 LEGEND
v (Male)	
(Famale)	
onnector	CHECKED BY
	<u>MASRILAYANTI, S.T, M.Sc, Ph.d</u> <u>NIP . 197512192001122001</u> PROJECT
	PRESTRESSED CONCRETE BRIDGE DESIGN BY AFDHIL
der.	ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of PCI-Girder Segment 1 & 5 Copy 1 As indicated PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 03 DATE : 3 / 13

LEGEND	CIVIL ENGINEERING F ENGINEERING S UNIVERSITY ADANG 2024
CHECKED BY 	EGEND
CHECKED BY MASRILAYANTI, S.T, M.Sc, Ph.d NIP . 197512192001122001 PROJECT	
CHECKED BY MASRILAYANTI, S.T, M.Sc, Ph.d NIP . 197512192001122001 PROJECT	
MASRILAYANTI, S.T, M.Sc, Ph.d NIP . 197512192001122001 PROJECT	CKED BY
PRESTRESSED CONCRETE BRIDGE	NTI, S.T, M.Sc, Ph.d 512192001122001 OJECT
DESIGN BY AFDHIL	CONCRETE BRIDGE
ID NUMBER 2110922064	CONCRETE BRIDGE
PROJECT TITLE SCALE	64
Reinforcement Details of Floor As	64 LE SCALE
PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE	CONCRETE BRIDGE
PROJECT TYPE : DTL - 04	CONCRETE BRIDGE

	-		
	DEPARTM FAC Al	ENT OF CIVIL E ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
		LEGEND	
0.5"			
00			
		OUPOVED D.	
		CHECKED BY	
-	MA	SRILAYANTI, S.T, M. NIP . 19751219200112	Sc, Ph.d
		DDOIECT	
		r KUJEU I	
	PRESTRE	SSED CONCRE	ETE BRIDGE
	DESIGN BY	AFDHIL	
	ID NUMBER	2110922064	
	PROJ	ECT TITLE	SCALE
	Reinforceme	nt of Diaphragm	As indicated
	PROJECT TYPE :	STRUCTURE	PAGE / TOTAL PAGE
	PROJECT TYPE :	DTL - 05	5/13
	DATE :		

DEPARTMENT OF CIVIL EL FACULTY OF ENGINI ANDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
LEGEND	
CHECKED BY	
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT	Sc, Ph.d
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT PRESTRESSED CONCRE	Sc, Ph.d_ 2001 ETE BRIDGE
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT PRESTRESSED CONCRE DESIGN BY AFDHIL	Sc, Ph.d_ 2001 ETE BRIDGE
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT PRESTRESSED CONCRE DESIGN BY AFDHIL ID NUMBER 2110922064	Sc, Ph.d_ 2001 ETE BRIDGE
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT PRESTRESSED CONCRE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE	Sc, Ph.d 2001 ETE BRIDGE SCALE
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT PRESTRESSED CONCRE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE Reinforcement Details of Barrier and Sidewalk	Sc, Ph.d 2001 ETE BRIDGE SCALE 1 : 20
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT PRESTRESSED CONCRE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE Reinforcement Details of Barrier and Sidewalk PROJECT TYPE: STRUCTURE	Sc, Ph.d 2001 ETE BRIDGE SCALE 1 : 20 PAGE/TOTAL PAGE
CHECKED BY MASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT PROJECT DESIGN BY AFDHIL DONUMBER 2110922064 PROJECT TITLE Reinforcement Details of Barrier and Sidewalk PROJECT TYPE : STRUCTURE PROJECT TYPE : DTL - 06	Sc, Ph.d 2001 ETE BRIDGE SCALE 1 : 20 PAGE / TOTAL PAGE

CHECKED BY MASRILAYANTI, S.T, M.Sc, Ph.d. NIP. 197512192001122001 PROJECT TITLE PROJECT TITLE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Deck SIRUCTURE PAGE / TOTAL PAGE PROJECT TYPE: STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE: DTL - 07 7 / 13	DEPARTM FAC A	ENT OF CIVIL E ULTY OF ENGIN NDALAS UNIVER PADANG 2024 LEGEND	NGINEERING EERING SITY
MASRILAYANTI, S.T, M.Sc, Ph.d NIP. 197512192001122001 PROJECT PROJECT DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Deck 1 : 140 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 07 7 / 13		CHECKED BY	
PROJECT PROJECT PROJECT IT DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Deck SIAB PROJECT TYPE : STRUCTURE PROJECT TYPE : DTL - 07 7 / 13	MA	ASRILAYANTI, S.T, M. NIP . 197512192001122	Sc, Ph.d 2001
PROJECT TYPE : DTL - 07 PROJECT TYPE : DTL - 07	PRESTRE	SSED CONCPT	TE BRIDGE
ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Deck 1 : 140 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 07 7 / 13	DESIGN BY	AFDHIL	
PROJECT TITLE SCALE Reinforcement Details of Deck 1 : 140 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 07 7 / 13	ID NUMBER	2110922064	
Reinforcement Details of Deck Slab 1:140 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 07 7 / 13	PROJ	ECT TITLE	SCALE
PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 07 7 / 13	Reinforcemer	nt Details of Deck Slab	1 : 140
PROJECT TYPE : DTL - 07 7 / 13	PROJECT TYPE :	STRUCTURE	PAGE / TOTAL PAGE
DATE : /// 1.5	PROJECT TYPE : DATE :	DTL - 07	7 / 13

	DEPARTMENT OF CIVI FACULTY OF EN ANDALAS UNT PADAN 2024	L ENGINEERING GINEERING VERSITY G
	LEGEN	ND
	CHECKED	BY
	MASRILAVANTI S	T. M.Sc, Ph.d
	NIP . 1975121920	01122001
	PROJEC	Т
	PRESTRESSED CON	CRETE BRIDGE
	DESIGN BY AFDHIL	
1	ID NUMBER 2110922064	
id	PROJECT TITLE	SCALE
	Elastomer Bearing Pad Deta	ils As indicated
	PROJECT TYPE : STRUCTURE	PAGE / TOTAL PAGE
	PROJECT TYPE : DTL - 08	8 / 13
	DATE :	0/13
	L	

LEGEND LEGEND LEGEND CHECKED BY CHECKED BY MASRILAVANTI, S.T, M.Sc, Ph.d. NIP. 197512192001122001 PROJECT PROJECT TITLE SCALE Reinforcement Details of Breast 1 : 50 PROJECT TYPE : STRUCTURE	DEPARTM FACI AI	ENT OF CIVIL EN ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
CHECKED BY MASRILAVANTI, S.T. M.Sc, Ph.d. NIP. 197512192001122001 PROJECT PRESTRESSED CONCRETE BRIDGE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall 1 : 50 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09 2 : : : : : : : : : : : : : : : : : : :		LEGEND	
CHECKED BY MASRILAYANTI, S.T, M.Sc, Ph.d NIP . 197512192001122001 PROJECT PROJECT PRESTRESSED CONCRETE BRIDGE DESIGN BY AFDHIL ID NUMBER 2 110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09			
CHECKED BY MASRILAYANTI, S.T, M.Sc, Ph.d NIP . 197512192001122001 PROJECT PROJECT PRESTRESSED CONCRETE BRIDGE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09			
MASRILAYANTI, S.T, M.Sc, Ph.d NIP . 197512192001122001 PROJECT PRESTRESSED CONCRETE BRIDGE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall 1 : 50 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09 2 : 1 : 2			
MASRILAYANTI, S.T, M.Sc, Ph.d NIP : 197512192001122001 PROJECT PROJECT DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall 1 : 50 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspa		CHECKED BY	
PRESTRESSED CONCRETE BRIDGE DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall 1 : 50 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09 0 : 1 = 1		CHECKED BY	
DESIGN BY AFDHIL ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall 1 : 50 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09 0 / 1 = 0		CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT	Sc, Ph.d 001
ID NUMBER 2110922064 PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall 1 : 50 PROJECT TYPE : STRUCTURE PROJECT TYPE : DTL - 09	PRESTRE	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRF	Sc, Ph.d 2001
PROJECT TITLE SCALE Reinforcement Details of Breast Wall and Back Wall 1:50 PROJECT TYPE: STRUCTURE PROJECT TYPE: DTL - 09	PRESTRE DESIGN BY	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d_ :001 CTE BRIDGE
Reinforcement Details of Breast Wall and Back Wall 1:50 PROJECT TYPE : STRUCTURE PAGE / TOTAL PAGE PROJECT TYPE : DTL - 09 0:112	PRESTRE DESIGN BY ID NUMBER	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Sc, Ph.d 2001 CTE BRIDGE
Wall and Back Wall PROJECT TYPE: STRUCTURE PROJECT TYPE: DTL - 09 00 / 10 - 00	PRESTRE DESIGN BY ID NUMBER PROJ	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Sc, Ph.d 2001 CTE BRIDGE SCALE
PROJECT TYPE: DTL - 09	PRESTRE DESIGN BY ID NUMBER PROJ Reinforcemen	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE t Details of Breast 1 Details of Breast	Sc, Ph.d 2001 TTE BRIDGE SCALE 1 : 50
	PRESTRE DESIGN BY ID NUMBER PROJ Reinforcemen Wall and PROJECT TYPE -	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE t Details of Breast d Back Wall STRUCTURE	Sc, Ph.d 2001 CTE BRIDGE SCALE 1 : 50 PAGE / TOTAL BAGE

DEPARTM FAC A	LENT OF CIVIL EN ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED BY	
	CHECKED BY	
MA	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122	Sc, Ph.d_ /001
M/	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT	Sc, Ph.d_ 001
PRESTRE	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 1001 CTE BRIDGE
PRESTRE DESIGN BY	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL	Sc, Ph.d 1001 ETE BRIDGE
PRESTRE DESIGN BY ID NUMBER	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Sc, Ph.d_ :001 CTE BRIDGE
PRESTRE DESIGN BY ID NUMBER PROJ	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Sc, Ph.d 1001 CTE BRIDGE SCALE
PRESTRE DESIGN BY ID NUMBER PROJ Reinforcemer	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE tt Details of Wing Wall	Sc, Ph.d 1001 TE BRIDGE SCALE 1 : 50
PRESTRE DESIGN BY ID NUMBER PROJ Reinforcemer	CHECKED BY ASRILAYANTI, S.T, M.: NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE th Details of Wing Wall STRUCTURE	Sc, Ph.d 001 CTE BRIDGE SCALE 1 : 50 PAGE / TOTAL PAGE


```
Top View of Approach Slab
```


DEPARTM FACI AN	ENT OF CIVIL EN ULTY OF ENGINI NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED BY	
	CHECKED BY	
PRESTRE	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 2001
MA	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL	Sc, Ph.d_ 2001 ETE BRIDGE
PRESTRE DESIGN BY ID NUMBER	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Sc, Ph.d 2001 ETE BRIDGE
PRESTRE DESIGN BY ID NUMBER	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Se, Ph.d_ 2001 ETE BRIDGE SCALE
MA PRESTREA DESIGN BY ID NUMBER PROJ Reinforcen Appro	CHECKED BY SRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE nent Details of ouch Slab	Sc, Ph.d 2001 ETE BRIDGE SCALE As indicated
PRESTRE DESIGN BY ID NUMBER PROJI Reinforcen Appro PROJECT TYPE :	CHECKED BY SRILAYANTI, S.T, M. NIP. 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE nent Details of ouch Slab STRUCTURE	Sc, Ph.d 2001 ETE BRIDGE SCALE As indicated PAGE / TOTAL PAGE

DEPARTM FAC A	LENT OF CIVIL EN NDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
	LEGEND	
	CHECKED BY	
	CHECKED BY	
PRESTRE	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE	Sc, Ph.d 001 TE BRIDGE
M	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL	Se, Ph.d_ 001 TE BRIDGE
MA	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064	Sc, Ph.d 001 TE BRIDGE
PRESTRE DESIGN BY ID NUMBER PROJ	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE	Sc, Ph.d 001 CTE BRIDGE SCALE
PRESTRE DESIGN BY ID NUMBER PROJ Reinforcer P	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE nent Details of ilecap	Sc, Ph.d 001 TE BRIDGE SCALE 1 : 50
MA	CHECKED BY ASRILAYANTI, S.T, M. NIP . 197512192001122 PROJECT SSED CONCRE AFDHIL 2110922064 ECT TITLE nent Details of ilecap STRUCTURE	Se, Ph.d 001 CTE BRIDGE SCALE 1 : 50 PAGE / TOTAL PAGE

DEPARTMENT OF CIVIL EL FACULTY OF ENGINI ANDALAS UNIVER PADANG 2024	NGINEERING EERING SITY
LEGEND	
CHECKED BY	
MASRILAYANTI, S.T, M. NIP . 197512192001123	Sc, Ph.d
PROJECT]
PRESTRESSED CONCRE	ETE BRIDGE
DESIGN BY AFDHIL	
ID NUMBER 2110922064	
PROJECT TITLE	SCALE
Reinforcement Details of Pile Foundation	As indicated
PROJECT TYPE : STRUCTURE	PAGE / TOTAL PAGE
PROJECT TYPE : DTL - 13	13 / 13
DAIL .	

KEMENTERIAN PENDIDIKAN, SAINS, DAN TEKNOLOGI UNIVERSITAS ANDALAS FAKULTAS TEKNIK DEPARTEMEN TEKNIK SIPIL

Alamat: Gedung Departemen Teknik Sipil, Kampus Unand Limau Manis, Padang 25163 Telepon: 0751-72664; Fax: 0751-72566 Laman: http://sipil.ft.unand.ac.id Email: tekniksipil@eng.unand.ac.id

HASIL PEMERIKSAAN KESAMAAN TUGAS AKHIR (TA) / TESIS

Departemen Teknik Sipil Universitas Andalas telah melakukan pemeriksaan 'kesamaan' (*similarity*) dengan menggunakan aplikasi Turnitin terhadap laporan Tugas Akhir / Tesis dari mahasiswa Teknik Sipil Universitas Andalas berikut:

Nama	:	Afdhil
NIM	:	2110922064
Judul TA/Tesis	:	DESIGN OF PRESTRESSED CONCRATE BRIDGE USING PCI-GIRDER BY IMPLEMENTING THE CONCEPT OF BUILDING INFORMATION MODELING (BIM)
Turnitin Submission ID	:	2565186166
Index Similarity	:	17%

Angka *index similarity* diatas sudah memenuhi persyaratan kesamaan yang ditetapkan oleh Universitas Andalas.

Padang, 16/01/2025 Diperiksa oleh:

Ayu Marta Mulya

Diketahui, Dosen Pembimbing TA

Masrilayanti, S.T.,M.Sc.,Ph.D NIP. 197512192001122001

AFDHIL-DESIGN OF PRESTRESSED CONCRETE BRIDGE USING PCI-GIRDER BY IMPLEMENTING THE CONCEPT OF BUILDING INFORMATION MODELING (BIM)

ORIGIN	ALITY REPORT			
SIMILA	7% ARITY INDEX	14% INTERNET SOURCES	7% PUBLICATIONS	7% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	WWW.CO	ursehero.com		2%
2	www.mi	dasoft.com		1%
3	docume Internet Sourc	nts.mx		1%
4	sipil.pnj. Internet Sourc	ac.id		1 %
5	binamar Internet Sourc	ga.pu.go.id		1 %
6	idoc.pub) .e		1 %
7	WWW.res	searchgate.net		<1%
8	Submitte Student Paper	ed to Coventry	University	<1%

Submitted to Central Queensland University