Journal of Building Engineering, 47(October 2021), 103880. https://doi.org/10.1016/j.jobe.2021.103880

- Salkhordeh, M., Govahi, E., & Mirtaheri, M. (2021). Seismic fragility evaluation of various mitigation strategies proposed for bridge piers. *Structures*, 33(May), 1892–1905. https://doi.org/10.1016/j.istruc.2021.05.041
- Shama, A., & Jones, M. (2020). Seismic Performance-Based Design of Cable-Supported Bridges: State of Practice in the United States. *Journal of Bridge Engineering*, 25(12), 1–10. https://doi.org/10.1061/(asce)be.1943-5592.0001639
- Shirwa, A. M., Moniruzzaman, P., Biswas, T., & Shirwa, A. (2014). Incremental Dynamic Analysis of Reinforced Concrete Structures Considering Height Effects. October 2014, 0–9.
- Simanjuntak, A. V. H., Asnawi, Y., Umar, M., Rizal, S., & Syukri, M. (2020). A Microtremor Survey to Identify Seismic Vulnerability Around Banda Aceh Using HVSR Analysis. *Elkawnie*, 6(2), 342. https://doi.org/10.22373/ekw.v6i2.7886
- Simos, N., Manos, G. C., & Kozikopoulos, E. (2018). Near- and far-field earthquake damage study of the Konitsa stone arch bridge. *Engineering Structures*, 177, 256–267.

https://doi.org/10.1016/j.engstruct.2018.09.072

- Society, S. (1976). A study on the duration of strong earthquake ground motion. 14F, 1T, Refs. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(3), 28. https://doi.org/10.1016/0148-9062(76)90487-3
- Soltangharaei, V., Razi, M., & Gerami, M. (2016). Comparative evaluation of behavior factor of SMRF structures for near and far fault ground motions. *Periodica Polytechnica Civil Engineering*, 60(1), 75–82. https://doi.org/10.3311/PPci.7625
- Somerville, P. (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. October 2016. https://doi.org/10.1785/gssrl.70.1.59
- Soyluk, K., & Karaca, H. (2017). Near-fault and far-fault ground motion effects on cable-supported bridges. *Procedia Engineering*, 199, 3077–3082. https://doi.org/10.1016/j.proeng.2017.09.421
- Su, P., Zhu, X., Chen, Y., Xue, B., & Zhang, B. (2022). Seismic Response Analysis of a Curved Bridge under Near-Fault and Far-Field Ground Motions. *Applied Sciences*, 12(16), 8349. https://doi.org/10.3390/app12168349
- Sucuoğlu, H., & Nurtuğ, A. (1995). Earthquake ground motion characteristics and seismic energy dissipation. *Earthquake Engineering & Structural Dynamics*, 24(9), 1195–1213. https://doi.org/10.1002/eqe.4290240903
- Sucuoğlu, H., Yücemen, S., Gezer, A., & Erberik, A. (1998). Statistical evaluation of the damage potential of earthquake ground motions. *Structural Safety*, 20(4), 357–378. https://doi.org/10.1016/S0167-4730(98)00018-6
- Sun, B., Zhang, S., Deng, M., & Wang, C. (2020). Inelastic dynamic response and fragility analysis of arched hydraulic tunnels under as-recorded far-fault and near-fault ground motions. *Soil Dynamics and Earthquake*

Engineering, 132(December 2019), 106070. https://doi.org/10.1016/j.soildyn.2020.106070

- Tauheed, A., & Alam, M. (2022). Seismic performance of regular frame under near field and far field earthquakes. *Materials Today: Proceedings*, 64, 554–569. https://doi.org/10.1016/j.matpr.2022.05.112
- Tehrani, P., & Mitchell, D. (2013). Incremental dynamic analysis (IDA) applied to seismic risk assessment of bridges. *Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems*, *March 2016*, 561–596. https://doi.org/10.1533/9780857098986.4.561
- Thachampuram, S. J. (2014). *Development of Fragility Curves for an RC Frame*. 6890(May), 591–594.
- Todorov, B., & Billah, A. H. M. M. (2021). Seismic fragility and damage assessment of reinforced concrete bridge pier under long-duration, nearfault, and far-field ground motions. *Structures*, *31*, 671–685. https://doi.org/10.1016/j.istruc.2021.02.019
- Towashiraporn, P., & Disaster, A. (2012). Earthquake Risk Assessment of Mandalay City, Myanmar.
- Tubaldi, E., Dall'Asta, A., & Dezi, L. (2015). Seismic response analysis of continuous multispan bridges with partial isolation. *Shock and Vibration*, 2015. https://doi.org/10.1155/2015/183756
- Tubaldi, E., Scozzese, F., De Domenico, D., & Dall'Asta, A. (2021). Effects of axial loads and higher order modes on the seismic response of tall bridge piers. Engineering Structures, 247(April), 113134. https://doi.org/10.1016/j.engstruct.2021.113134
- Vamvatsik<mark>os,</mark> D. (20<mark>18).</mark> *Applied Incremental Dynamic Analysis* 1. April. https://doi.org/10.1193/1.1737737
- Vamvatsikos, D., & Cornell, C. A. (2004). Applied incremental dynamic analysis. *Earthquake Spectra*, 20(2), 523–553. https://doi.org/10.1193/1.1737737
- Van Der Elst, N. J., & Brodsky, E. E. (2010). Connecting near-field and far-field earthquake triggering to dynamic strain. *Journal of Geophysical Research: Solid Earth*, 115(7), 1–21. https://doi.org/10.1029/2009JB006681
- Vargas, Y. F., Barbat, A. H., Pujades, L. G., & Hurtado, J. E. (2014). Probabilistic seismic risk evaluation of reinforced concrete buildings. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 167(6), 327– 336. https://doi.org/10.1680/stbu.12.00031
- Vargas, Y. F., Pujades, L. B., Barbat, A. H., & Hurtado, J. E. (2010). Probabilistic assessment of the global damage in reinforced concrete structures. *14Ecee*, 43–61.
- Vargas, Y. F., Pujades, L. G., Barbat, A. H., & Hurtado, J. E. (2013). Capacity, fragility and damage in reinforced concrete buildings: A probabilistic approach. *Bulletin of Earthquake Engineering*, *11*(6), 2007–2032. https://doi.org/10.1007/s10518-013-9468-x
- Vazurkar, U. Y., & Chaudhari, D. J. (2016). Development of Fragility Curves for RC Buildings. International Journal of Engineering Research, 5(Special 3), 591–594.

- Veggalam, S., Karthik Reddy, K. S. K., & Somala, S. N. (2021). Collapse fragility due to near-field directivity ground motions: Influence of component, rupture distance, hypocenter location. *Structures*, 34(September), 3684– 3702. https://doi.org/10.1016/j.istruc.2021.09.096
- Verma, I., & Kumar, A. (2021). Analytical Study on Ductility Parameters of seismic resisting elements. November 2021, 16571–16582.
- Vona, M. (2014). Fragility Curves of Existing RC Buildings Based on Specific Structural Performance Levels. Open Journal of Civil Engineering, 04(02), 120–134. https://doi.org/10.4236/ojce.2014.42011
- Wei, B., Zuo, C., He, X., Jiang, L., & Wang, T. (2018). Effects of vertical ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway. *Soil Dynamics and Earthquake Engineering*, 115(September), 281–290.

https://doi.org/10.1016/j.soildyn.2018.08.022

- Wu, S. L., Charatpangoon, B., Kiyono, J., Maeda, Y., Nakatani, T., & Li, S. Y. (2016). Synthesis of near-fault ground motion using a hybrid method of stochastic and theoretical green's functions. *Frontiers in Built Environment*, 2(October). https://doi.org/10.3389/fbuil.2016.00024
- Xu, J. G., Cai, Z. K., & Feng, D. C. (2021). Life-cycle seismic performance assessment of aging RC bridges considering multi-failure modes of bridge columns. *Engineering Structures*, 244(January), 112818. https://doi.org/10.1016/j.engstruct.2021.112818
- Yang, S., & Mavroeidis, G. P. (2018a). Bridges crossing fault rupture zones: A review. *Soil Dynamics and Earthquake Engineering*, *113*(February), 545–571. https://doi.org/10.1016/j.soildyn.2018.03.027
- Yang, S., & Mavroeidis, G. P. (2018b). Bridges crossing fault rupture zones: A review. Soil Dynamics and Earthquake Engineering, 113(July), 545–571. https://doi.org/10.1016/j.soildyn.2018.03.027
- Yilmaza, M. F., & Alpaslanb, E. (2020). Civil Engineering Beyond Limits. Acapublishing.Com, 1, 22–28.
- Zhang, Q., & Alam, M. S. (2020). State-of-the-Art Review of Seismic-Resistant Precast Bridge Columns. *Journal of Bridge Engineering*, 25(10), 1–16. https://doi.org/10.1061/(asce)be.1943-5592.0001620
- Zheng, S. xiong, Shi, X. hu, Jia, H. yu, Zhao, C. hui, Qu, H. lue, & Shi, X. long. (2020). Seismic response analysis of long-span and asymmetrical suspension bridges subjected to near-fault ground motion. *Engineering Failure Analysis*, https://doi.org/10.1016/j.engfailanal.2020.104615
- Zheng, S. xiong, Shi, X. long hu, Jia, H. yu, Zhao, C. hui, Qu, H. lue, Shi, X. long hu, Todorov, B., Billah, A. H. M. M., Noori, H. R., Memarpour, M. M., Yakhchalian, M., Soltanieh, S., Chen, X., Xiang, N., Li, C., Nazarnezhad, T., Naderpour, H., Chen, X., Li, C., ... Somala, S. N. (2021). Deriving seismic fragility curves for sheet-pile wharves using finite element analysis. *Structures*, 115(January), 265–277. https://doi.org/10.1016/j.soildyn.2019.105945

Zou, P. X. W. (2003). Flexural Behavior and Deformability of Fiber Reinforced Polymer Prestressed Concrete Beams. *Journal of Composites for Construction*, 7(4), 275–284. https://doi.org/10.1061/(asce)1090-0268(2003)7:4(275)

APPENDIX-A

Appendix-A.1.Material Properties and Section Properties

Concrete Material				
con_ma	Mander et al. nonlinear concrete model			
Compressive Strength	45 MPa			
Modulus of Elasticity of Concrete	26300 MPa			
Steel Material				
stl_mp	Menegotto-Pinto steel model			
Yield Strength	500 MPa			
Modulus of Elasticity of Steel	200,000 MPa			
Unit Weight of Reinforced Concrete	2.5 ton/m3			
Unit Weight of Wearing Surface	2.25 ton/m3			
Section Properties	SILLAS			
Pier	Reinforced Concrete			
	Rectangular Hollow Section			
Slab thickness	0.25m			
Parapet Height	1.445 m			
Diaphragm Height	1.25 m			
Diaphragm Width	0.40 m			
Girder	PCI Girders			
Pier Head Height	4 m			
Pier Head Width	3.9 m			
Element Classes				
Inelastic Force-based Frame Element	Piers			
(infrmFB)				
	Rigid Link for Piers and Pier Heads			
Elastic Frame Element (elfrm)	Decking			
	Pier Head			
	Diaphragm			
Linear-Symm <mark>et</mark> ric	Pier Head to Slab			

Appendix-A.2.Mass of Piers

The Whole Mass of Piers								
Sr. No.	ltem	Length L (m)	Breadth B (m)	Thickness H (m)	Density of RC y (ton/m ³)	Mass (LxBxHxy) (ton)		
1	Pier 1	29.338	3.10	3.600	2.50	818.53		
2	Pier 2	42.810	3.10	3.600	2.50 BAN	GSP 1194.40		
3	Pier 3	42.810	3.10	3.600	2.50	1194.40		
4	Pier 4	46.451	3.10	3.600	2.50	1295.98		
			T	ne Middle Mass	of Piers			

Sr. No.	ltem	Length L (m)	Breadth B (m)	Thickness H (m)	Density (ton/m ³)	Mass (LxBxHxγ) (ton)	
1	Pier 1	29.338	3.10	2.600	2.50	591.16	
2	Pier 2	42.810	3.10	2.600	2.50	862.62	
3	Pier 3	42.810	3.10	2.600	2.50	862.62	
4	Pier 4	46.451	3.10	2.600	2.50	935.99	

Appendix-A.2 Continued:

Lumped Mass of Piers							
Sr. No.	ltem	Whole Mass (ton)	Middle Mass (ton)	Lumped Mass (ton)			
1	Pier 1	818.53	591.16	227.37			
2	Pier 2	1194.40	862.62	331.78			
3	Pier 3	1194.40	862.62	331.78			
4	Pier 4	1295.98	935.99	360.00			

Appendix-A.3.PCI Girder Area

For PCI Girders	Area 1 (m²)	Area 2 (m ²)	Area 3 (m²)	Area 4 (m²)	Area 5 (m²)	Total Area (m²)
1200 - 240 - 3 225 - 240 - 3 225 - 25 - 25 - 25 - 25 - 25 - 25 - 25	0.33	0.04	0.27	0.08	0.18	0.91

Appendix-A.4.Load calculation

Sr. No	Item	Total Numbe r	Lengt h L (m)	Breadt h B (m)	Thicknes s H (m)	Density γ (ton/m3)	Di	stributed load (ton/m) Β x H x γ
1	Girder	1	196.2	0.91	1 (m2)	2.50		2.275
2	Pier Head	1	28.200	2.15	3.100	2.50		16.66
3	Diaphra <mark>gm</mark>	1	11.200	0.40	3.030	2.50		3.03
4	Slab	1	196.2	11.245	0.25	2.5		7.028
5	Parapet	1	196.2	0.50	02 (m ²)	2.5		1.278
6	Asphalt Wearing Surface	1	196.2	11.245	0.08	2.25		2.024
						OF G		

APPENDIX-B

Appendix-B.1.Nodes

Node Name	X	Y	Z	Туре
A1*	0	6.95	-0.01	non-structural
A1**	0	21.25	-0.01	non-structural
L4a	154.2	21.25	0	structural
l1a	38.1	21.25	0	structural
ns	-0.01	6.95	0	non-structural
ns*	-0.01	21.25	0	non-structural
p1	38.1	6.95	0	structural
11	38.1	6.95	0	structural
A1	NI OEK.	6.95 A	3.513	structural
12	76.8	6.9 <mark>5</mark>	0	structural
A2	196.2	6.95	3.51 3	structural
13	115.5	6.95	0	structural
d3	38.1	6.95	3.513	structural
14	154.2	6.95	0	structural
d6	76.8	6.95	3.513	structural
d9	115.5	6.95	3.513	structural
A11	0	21.25	3.513	structural
d12	154.2	6.95	3.513	structural
A22	196.2	21.25	3.513	structural
d23	38. <mark>1</mark>	21.25	3.513	structural
d26	76.8	21.25	3.513	structural
d29	115.5	21.25	3.513	structural
d32	154.2	21.25	3.513	structural
l2a	76.8	21.25	0	structural
13a	115.5	21.25	0	structural
p1*	38.1	6.95	-29.338	non-structural
p1**	38.1	6.95	-30.938	structural
p1a	38.1	21.25	0	structural
p1a*	38.1	21.25	-29.338	non-structural
p1a**	38.1	21.25	-30.938	structural
p2	76.8	6.95	0	structural
p2*	76.8	6.95	-42.8	non-structural
p2**	76.8	D 16.95	-44.41	structural
p2a	76.8	21.25	0	structural
p2a* TUK	76.8	21.25	-42.8	non-structural
p2a**	76.8	21.25	-44.41	structural
p3	115.5	6.95	0	structural
p3*	115.5	6.95	-42.81	non-structural
p3**	115.5	6.95	-44.41	structural
p3a	115.5	21.25	0	structural
p3a*	115.5	21.25	-42.81	non-structural
p3a**	115.5	21.25	-44.41	structural
p4	154.2	6.95	0	structural
p4*	154.2	6.95	-46.451	non-structural
p4**	154.2	6.95	-48.051	structural
p4a	154.2	21.25	0	structural
p4a*	154.2	21.25	-46.451	non-structural
p4a**	154.2	21.25	-48.051	structural

Appendix-B.1 Continued:

Node Name	X	Y	Z	Туре
ph1	38.1	0	0	structural
ph1*	38.1	28.2	0	structural
ph2	76.8	0	0	structural
ph2*	76.8	28.2	0	structural
ph3	115.5	0	0	structural
ph3*	115.5	28.2	0	structural
ph4	154.2	0	0	structural
ph4*	154.2	28.2	0	structural

Appendix-B.2.Element Connectivity

Element Name	Element Class	Node Names	Rigid Offset
Link1*	phpierlink	l1a p1a A11 ns*	-
Link2*	phpierlink	l2a p2a A11 ns*	-
Link3*	phpierlink	l3a p3a A11 ns	-
Link4*	phpierlink	L4a p4a A11 ns	
Pdm1	Ldeckmass	p1	-
Pdm1a	Ldeckmass	p1a	
Pdm2a	Ldeckmass	p2a	
Pdm3a	Ldeckmass	p3a	
Pdm4a	Ldeckmass	p4a	-
Pier1	Pier11	p1 p1** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00
Pm1	Lmaspr1	p1	
PierHead1	PierHead	ph1 p1 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
Link1	phpierlink	l1 p1 A1 ns	-
PierHead2	Pier <mark>Head</mark>	p1_p1a_deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
Pdm2	Ldeckmass	p2	-
Link2	phpierlink	<mark>l2 p2</mark> A1 ns	-
Pier2	Pier22	p2 p2** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00
Pm1a	Lmaspr1	p1a	-
Pm2	Lmaspr2	p2	-
Pdm3	Ldeckmass	p3	
Link3	phpierlink	l3 p3 A1 ns	
PierHead3	PierHead	p1a ph1* deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
Pier3	Pier33	p3 p3** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00
Pm3	Lmaspr3	p3	icst-
Pdm4	Ldeckmass	p4	BANGS
Link4	phpierlink	l4 p4 A1 ns	
PierHead4	PierHead	ph2 p2 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
Pier4	Pier44	p4 p4** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00
PierHead5	PierHead	p2 p2a deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
PierHead6	PierHead	p2a ph2* deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
PierHead7	PierHead	ph3 p3 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
PierHead8	PierHead	p3 p3a deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
PierHead9	PierHead	p3a ph3* deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00
PierHead10	PierHead	ph4 p4 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00

1

Element Name	Element Class	Node Names	Rigid Offset			
PierHead11	PierHead	p4 p4a deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
Pier11	Pier11	p1a p1a** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
PierHead12	PierHead	p4a ph4* deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
Pier22	Pier22	p2a p2a** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
Pier33	Pier33	p3a p3a** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
Pier44	Pier44	p4a p4a** deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
Pm2a	Lmaspr2	p2a	-			
Pm3a	Lmaspr3	рЗа	-			
Pm4a	Lmaspr4	UNTED PARTAS AND				
dm1	di <mark>stribd</mark> eck	VIVERAL da AN	DALAS			
Rigid1	RigidPiPh	p1 d3 deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
deck1	decking	A1 d3 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
dm2	distribdeck	d3 d6	-			
deck2	decking	d3 d6 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
Rigid2	RigidPiPh	p1a d23 deg=180.00	0.00 0.00 0. <mark>00 0.00</mark> 0.00 0.00			
Rigid3	RigidPiPh	p2_d6_deg=180.00	0.00 0.00 0.0 <mark>0 0.00</mark> 0.00 0.00			
deck3	decking	d6 <mark>d</mark> 12 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
dm3	distribdeck	d6 d12				
Pm4	Lmaspr4	p4				
dm4	distribdeck	d12 A2	-			
deck4	decking	d12 A2 deg=0.00	0.00 0.00 0 <mark>.00 0.00</mark> 0.00 0.00			
Rigid4	RigidPiPh	p2a d26 deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
deck5	decking	A11 d23 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
dm5	distribdeck	A11 d23	-			
Rigid5	RigidPiPh	p <mark>3 d9 d</mark> eg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
dm6	distribdeck	d23 d26	-			
deck6	decking	d23 d26 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
Rigid6	RigidPiPh	p3a d29 deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
deck7	decking	d26 d29 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
Rigid7	RigidPiPh	p4 d12 deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
dm7	distribdeck	d26 d29	ALLOSA-			
dm8	distribdeck	d29 d32	BANC			
Rigid8	RigidPiPh	p4a_d32_deg=180.00	0.00 0.00 0.00 0.00 0.00 0.00			
deck8	decking	d29 d32 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
deck9	decking	d32 A22 deg=0.00	0.00 0.00 0.00 0.00 0.00 0.00			
dm9	distribdeck	d32 A22	-			

Appendix-B.2 Continued

Appendix-B.3.Restraints

Nodes Name	Restraints	Nodes Name	Restraints	
A1	y+z+rx+rz	p3**	x+y+z+rx+ry+rz	
A1*	non-structural	рЗа		
A1**	non-structural	p3a*	non-structural	
A2	x+y+z+rx+rz	p3a**	x+y+z+rx+ry+rz	
L4a		p4		
ns	non-structural	p4*	non-structural	
ns*	non-structural	p4**	x+y+z+rx+ry+rz	
11		p4a		
p1		p4a*	non-structural	
12		p4a**	x+y+z+rx+ry+rz	C
13	01	ph1		
d3		ph1*		
14		ph2		
d6		ph2*		
d9		ph3		
A11	y <mark>+z+rx+rz</mark>	ph3*		
d12		ph <mark>4</mark>		
A22	x+y+z+rx+rz	ph <mark>4</mark> *		
d23				
d26				
d29				
d32				
l1a				
l2a				
l3a				
p1*	non-structural			
p1**	x+y+z+rx+ry+rz			
p1a				
p1a*	non-structural			
p1a**	x+y+z+rx+ry+rz	TDIA		
p2		KEDJA	JAAN	
p2*	non-structural			BANGS
p2**	x+y+z+rx+ry+rz			
p2a*	non-structural			
p2a**	x+y+z+rx+ry+rz			
p2a				
р3				
р3*	non-structural			

APPENDIX-C

Appendix-C.1.Modal Periods and Frequencies

Mode	Period (sec)	Frequency (Hertz)	Angular Frequency (rad/sec)
1	0.83449556	1.19832872	7.5293214
2	0.53902914	1.85518727	11.65648541
3	0.43787658	2.28374855	14.34921537
4	0.34862248	2.86843231	18.02289177
5	0.27299798	3.66303082	23.01550143
6	0.21716081	4.60488238	28.93332932
7	0.16739271	5.97397566 AC	37.5355961
8	0.15182811	6.58639551	41 <mark>.3</mark> 8354353
9	0.13441811	7.4 <mark>394736</mark> 2	46.74359137
10	0.12623736	7.92158512	49.77278723
11	0.12351903	8.09591837	50.86815537
12	0.1155957	8.65084072	5 <mark>4.</mark> 3548353
13	0.11527596	8.67483552	54.50559908
14	0.1080534 <mark>3</mark>	9.25468113	<mark>58</mark> .1488765
15	0.10781149	9.27544883	58 <mark>.2</mark> 7936378
16	0.09464275	10.56604942	66.38844646
17	0.08861991	11.28414598	70.90038024
18	0.08818754	11.33947077	71.24799614
19	0.08467393	11.81001115	74.20448853
20	0.07443246	13.43499917	84.41458938
21	0.0732 <mark>41</mark> 58	13.65344574	85.78712967
22	0.07260029	13.77405038	86 <mark>.5</mark> 4491097
23	0.0705915	14.16601063	89 <mark>.0</mark> 0766984
24	0.0662414	15.09629848	9 <mark>4.8</mark> 5284078
25	0.06444248	15.51771551	97.5006821
26	0.06257004	15.98208969	100.4184311
27	0.06071673	16.46992632	103.4835991
28	0.05226432	19.13351339	120.2194102
29	0.0479178 ED	A A 20.8690717	131.1242447
30	0.03921528	25.50026479	160.222889
31	0.03749883	26.66749725 BAN	167.5568269
32	0.03658287	27.33519528	171.7520973
33	0.03005563	33.27163135	209.0518252
34	0.02416938	41.37465849	259.9646463
35	0.02333796	42.8486421	269.2259585
36	0.0196157	50.97957174	320.3140961

Sr No.	Displacement (m)	Base Shear (kN)	Sr No.	Displacement (m)	Base Shear (kN)	Sr No.	Displacement (m)	Base Shear (kN)
1	0	0	43	0.21	252356	85	0.42	218665
2	0.005	14363	44	0.215	254201	86	0.425	218159
3	0.01	27844	45	0.22	255793	87	0.43	217646
4	0.015	39330	46	0.225	257166	88	0.435	217136
5	0.02	49432	47	0.23	258358	89	0.44	216636
6	0.025	58536	48	0.235	259366	90	0.445	216147
7	0.03	67023	49	D C 0.24 C	260181	91	0.45	215669
8	0.03 <mark>5</mark>	74994	50	0.245	260766	92	0.455	215202
9	0.04	82538	51	0.25	261108	93	0.46	214746
10	0.04 <mark>5</mark>	89797	<mark>52</mark>	0.255	261122	94	0.465	214297
11	0.05	96755	53	0.26	260560	95	0.47	213858
12	0.05 <mark>5</mark>	103523	54	0.265	259258	96	0.475	213427
13	0.06	110118	55	0.27	258066	97	0.48	212997
14	0.06 <mark>5</mark>	116611	56	0.275	256812	98	0.485	212554
15	0.07	123048	57	0.28	255764	99	0.49	212050
16	0.07 <mark>5</mark>	<mark>1</mark> 29413	58	0.285	254756	100	0.495	211394
17	0.08	1 <mark>3</mark> 5720	59	0.29	253796	101	0.5	210197
18	0.08 <mark>5</mark>	141983	60	0.295	252838			
19	0.09	148181	61	0.3	251839			
20	0.09 <mark>5</mark>	154296	62	0.305	250742			
21	0.1	160313	<mark>63</mark>	0.31	249523			
22	0.1 <mark>05</mark>	166211	64	0.315	248125			
23	0.11	171989	65	0.32	246422			
24	0.115	177650	66	0.325	244547			
25	0.12	183172	67	0.33	242115			
26	0.12 <mark>5</mark>	188560	68	0.335	238355			
27	0.1 <mark>3</mark>	193801	69	0.34	234960			
28	0.135	198873	70	0.345	232275			
29	0.14	203760	71 K	ED _{0.35} JA	229728	7		
30	0.145	208473	72	0.355	228 123	DAR	IGSA	
31	0.15	213011	73	0.36	226800	BAI		
32	0.155	217379	74	0.365	225741			
33	0.16	221554	75	0.37	224789			
34	0.165	225544	76	0.375	223911			
35	0.17	229346	77	0.38	223105			
36	0.175	232931	78	0.385	222463			
37	0.18	236322	79	0.39	221880			
38	0.185	239525	80	0.395	221314			
39	0.19	242531	81	0.4	220767			
40	0.195	245320	82	0.405	220230			
41	0.2	247886	83	0.41	219701			
42	0.205	250233	84	0.415	219180			

Appendix-C.2.Longitudinal Axis Displacement Capacity Curves due to Targt Displacement in Longitudinal Direction Data Ouput

Base Base Base Displacement Displacement Displacement Sr Sr Sr Shear Shear Shear No. (m) No. (m) No. (m) (kN) (kN) (kN) 0.42 0.21 0.425 0.005 0.215 0.01 0.22 0.43 0.015 0.225 0.435 0.23 0.44 0.02 0.025 0.235 0.445 0.03 0.24 0.45 0.035 0.245 0.455 2553 0.04 0.25 0.46 2<mark>3</mark>4534 0.045 0.255 0.465 0.05 0.26 0.47 0.055 0.265 0.475 0.06 0.27 0.48 <mark>24</mark>2150 0.065 0.275 0.485 0.07 0.28 0.49 0.495 0.075 55 0.285 0.08 <mark>614</mark>87 0.29 0.5 0.085 0.295 0.09 0.3 0.095 0.305 0.1 0.31 0.105 0.315 0.11 0.32 0.115 0.325 0.12 0.33 0.125 0.335 0.13 0.34 0.135 0.345 0.14 0.35 0.145 0.355 0.15 0.36 0.155 0.365 0.16 0.37 0.165 0.375 0.17 0.38 0.175 0.385 0.18 0.39 0.185 0.395 0.19 0.4 0.195 0.405 0.2 0.41 0.205 0.415

Appendix-C.3.Transverse Axis Displacement Capacity Curves due to Targt Displacement in Longitudinal Direction Data Ouput

Appendix-C.4.Longitudinal Axis Displacement Capacity Curves due to Targt Displacement in
Transverse Direction Data Ouput

Sr. No.	Displacement (m)	Base Shear (kN)	Sr. No.	Displacement (m)	Base Shear (kN)	Sr. No.	Displacement (m)	Base Shear (kN)
1	0.000	0	40	0.137	200388	79	0.273	257337
2	0.004	10048	41	0.140	203785	80	0.277	256507
3	0.007	20027	42	0.144	207097	81	0.280	255801
4	0.011	29074	43	0.147	210324	82	0.284	255088
5	0.014	37162	44	0.151	213468	83	0.287	254413
6	0.018	44573	45	D0,154	216525	84	0.291	253751
7	0.021	<u>513</u> 51	46	CT _{0.158} TA	219493	85	<u> </u>	253088
8	0.025	<mark>577</mark> 00	47	0.161	222 <mark>3</mark> 68	86	0. <mark>298</mark>	<mark>2</mark> 52407
9	0.028	637 <mark>33</mark>	48	0.165	225153	87	0.301	251695
10	0.032	69518	<mark>4</mark> 9	0.168	227846	88	0.305	250929
11	0.035	75055	50	0.172	230435	89	0. <mark>308</mark>	<mark>2</mark> 50105
12	0.039	80368	51	0.175	232924	90	0.312	<mark>24</mark> 9202
13	0.042	<mark>855</mark> 63	52	0.179	235317	91	0.315	248202
14	0.046	90583	53	0.182	237617	92	0.319	<mark>24</mark> 7058
15	0.049	<mark>95</mark> 463	54	0.186	239825	93	0.322	<mark>2</mark> 45789
16	0.053	100 <mark>256</mark>	55	0.189	241937	94	0.326	244415
17	0.056	104953	56	0.193	243942	95	0.329	<mark>2</mark> 42755
18	0.060	109568	57	0 <mark>.</mark> 196	245841	96	0.33 <mark>3</mark>	<mark>2</mark> 40332
19	0.063	114129	58	<mark>0.</mark> 200	247627	97	0.336	<mark>2</mark> 37732
20	0.067	118 <mark>668</mark>	59	0.203	249304	98	0.340	<mark>2</mark> 35281
21	0.070	123171	60	0.207	250877	99	0.343	<mark>2</mark> 33458
22	0.074	127639	61	0.210	252339	100	0.347	<mark>2</mark> 31493
23	0.077	132078	62	0.214	253661			
24	0.081	136488	63	0.217	254845			
25	0.084	140876	64	0.221	255920			2
26	0.088	145231	65	0.224	256886			
27	0.091	149550	66	0.228 A	257768			
28	0.095	153821	67	0.231	258556		ICSA	
29	0.098	158047	68	0.235	259256		BANGS	
30	0.102	162216	69	0.238	259866			
31	0.105	166327	70	0.242	260366			
32	0.109	170375	71	0.245	260754			
33	0.112	174366	72	0.249	261024			
34	0.116	178296	73	0.252	261158			
35	0.119	182153	74	0.256	261094			
36	0.123	185946	75	0.259	260749			
37	0.126	189675	76	0.263	259925			
38	0.130	193329	77	0.266	259065			
39	0.133	196901	78	0.270	258233			

Appendix-C.5.Transverse Axis Displacement Capacity Curves due to Targt Displacement in Transverse Direction Data Ouput

Sr. No.	Displacement (m)	Base Shear (kN)	Sr. No.	Displacement (m)	Base Shear (kN)	Sr. No.	Displacement (m)	Base Shear (kN)
1	0.000	0	42	0.144	105333	82	0.284	172089
2	0.004	3733	43	0.147	107636	83	0.287	173270
3	0.007	7486	44	0.151	109916	84	0.291	174496
4	0.011	10929	45	0.154	112177	85	0.294	175742
5	0.014	14072	46	0.158	114417	86	0.298	177009
6	0.018	16937	47	D C 10.161 C A	116639	87	0.301	178297
7	0.021	19645	48	0.165 A	118842	88	0.305	179597
8	0.02 <mark>5</mark>	22254	49	0.1 <mark>68</mark>	121027	89	0.308	180912
9	0.02 <mark>8</mark>	24798	50	0.172	123190	90	0.312	182229
10	0.03 <mark>2</mark>	27310	51	0.175	125328	91	0.315	183520
11	0.03 <mark>5</mark>	29809	52	0.179	127441	92	0.319	184746
12	0.03 <mark>9</mark>	32277	53	0.182	129533	93	0.322	185935
13	0.04 <mark>2</mark>	<mark>3</mark> 4731	54	0.186	131602	94	0.326	187083
14	0.04 <mark>6</mark>	37194	55	0.189	133641	95	0.329	188065
15	0.04 <mark>9</mark>	39652	56	0.193	135660	96	0.33 <mark>3</mark>	188674
16	0.05 <mark>3</mark>	4 2107	57	0.196	137652	97	<mark>0.336</mark>	189123
17	0.05 <mark>6</mark>	<mark>445</mark> 60	58	0.200	139617	98	0.340	189571
18	0.06 <mark>0</mark>	47025	59	0.203	141554	99	0.343	190234
19	0.06 <mark>3</mark>	49 <mark>494</mark>	60	0.207	143456	100	<mark>0.34</mark> 7	190826
20	0.0 <mark>67</mark>	<mark>51962</mark>	61	0.210	145329	101	0.350	191698
21	0.0 <mark>70</mark>	54 <mark>429</mark>	62	0.214	147163			
22	0.07 <mark>4</mark>	56895	63	0.217	148958			
23	0.077	59366	64	0.221	150717			
24	0.0 <mark>8</mark> 1	61839	65	0.224	152436			
25	0.0 <mark>84</mark>	6 <mark>4</mark> 309	66	0.228	154107			
26	0.088	66777	67	0.231	155736		6	
27	0.091	69242	68	E D 0.235 AA	157315			
28	0.095	71706	69	0.238	158844		ICSA	
29	0.098	74165	70	0.242	160317	BA	NG	
30	0.102	76619	71	0.245	161720			
31	0.105	79068	72	0.249	163026			
32	0.109	81511	73	0.252	164248			
33	0.112	83945	74	0.256	165299			
34	0.116	86370	75	0.259	166143			
35	0.119	88790	76	0.263	166619			
36	0.123	91197	77	0.266	167287			
37	0.126	93590	78	0.270	168098			
38	0.130	95968	79	0.273	168934			
39	0.133	98332	80	0.277	169877			
40	0.137	100681	81	0.280	170969			

Slight (Sd ₁)	β	Ln(Sd ₁)	Ln(λ)	Ln(Sd₁)-Ln(λ)	(Ln(Sd₁)-Ln(λ))/β	Probability
0.060700	0.0173	-2.8018	-2.6493	-0.1525	-8.8294	0.00000000000000
0.062700	0.0173	-2.7694	-2.6493	-0.1201	-6.9525	0.0000000000179
0.064700	0.0173	-2.7380	-2.6493	-0.0887	-5.1346	0.00000014139150
0.066700	0.0173	-2.7076	-2.6493	-0.0582	-3.3720	0.00037316648427
0.068700	0.0173	-2.6780	-2.6493	-0.0287	-1.6614	0.04831265953555
0.070700	0.0173	-2.6493	-2.6493	0.0000	0.0000	0.50000000000000
0.072700	0.0173	-2.6214	-2.6493	0.0279	1.6151	0.94685425371528
0.074700	0.0173	-2.5943	-2.6493	0.0550	3.1863	0.99927958209687
0.076700	0.0173	-2.5679	-2.6493	0.0815	4.7161	0.99999879784094
0.078700	0.0173	-2.5421	-2.6493	JI 0.1072 AN	6.2064	0.99999999972900
0.080700	0. <mark>01</mark> 73	<mark>-2.5</mark> 170	-2.6493	0.1323	7.6594	0. <mark>9</mark> 999999999999999
0.082700	0.0 <mark>173</mark>	-2.4925	-2.6493	0.1568	9.0768	1.000000000000000
Moderate (Sd ₂)	β	Ln(Sd ₂)	Ln(λ)	$Ln(Sd_2)-Ln(\lambda)$	(Ln(Sd ₂)-Ln(λ))/β	Probability
0.08900	0.0170	-2.4191	-2.2926	-0.1265	-7.4324	0.00000000000005
0.09100	0.0170	-2.3969	-2.2926	-0.1043	-6.1265	0.00000000044913
0.09300	0.0170	-2.3752	-2.2926	-0.0825	-4.8490	0.00000062029082
0.09500	0.0170	-2.3539	-2.2926	-0.0612	-3.5988	0.00015987166074
0.09700	0.0170	-2.3330	-2.292 <mark>6</mark>	-0.0404	-2.3745	0.00878595227912
0.09900	0.0170	-2.3126	-2.2926	-0.0200	-1.1753	0.11994427473484
0.10100	0.0170	-2.2926	-2.2926	0.0000	0.0000	0.50000000000000
0.10300	0.0170	-2.2/30	-2.2926	0.0196	1.1522	0.8/538455595129
0.10500	0.0170	-2.2538	-2.2926	0.0388	2.2823	0.98876357933326
0.10700	0.0170	-2.2349	-2.2926	0.05/7	3.3910	0.99965183036853
0.10900	0.0170	-2.2164	-2.2926	0.0762	4.4/92	0.99999625418490
0.11100	0.0170	-2.1982	-2.2926	0.0944	5.54/6	0.99999998552218
0.11500	0.0170	-2.1004	-2.2920	0.1209	7,6270	0.9999999999999997902
0.11300	0.0170	-2.1020	-2.2920	0.1298	8.6/11	1,0000000000000000000000000000000000000
Extensive	B	Ln(Sd ₂)	<u>Ln(λ)</u>	Ln(Sd ₂)-Ln(λ)	(Ln(Sd₂)-Ln(λ))/β	Probability
(Sd₃)			()		((, , , , , , , , , , , , , , , , , , , ,
0.10330	0.0206	-2.2701	-2.0956	-0.1745	-8.4839	0.00000000000000
0.10822	0.0206	-2.2236	-2.0956	-0.1280	-6.2223	0.0000000024492
0.11314	0.0206	-2.1791	-2.0956	-0.0836	-4.0614	0.00002439411620
0.11806	0.0206	-2.1366	-2.0956	D -0.0410	-1.9924	0.02316426520826
0.12298	0.0206	-2.0957	-2.0956	-0.0002	-0.0079	0.49684683277586
0.12790	0.0206	-2.0565	-2.0956	0.0391	1.8987	0.97119963087214
0.13282	0.0206	-2.0188	-2.0956	0.0768	3.7334	0.99990553479332
0.13774	0.0206	-1.9824	-2.0956	0.1132	5.5013	0.99999998114864
0.14266	0.0206	-1.9473	-2.0956	0.1483	7.2071	0.999999999999971
0.14758	0.0206	-1.9134	-2.0956	0.1822	8.8552	1.00000000000000
Collapsed (Sd ₄)	β	Ln(Sd₄)	Ln(λ)	Ln(Sd₄)-Ln(λ)	(Ln(Sd₄)-Ln(λ))/β	Probability
0.15112	0.0206	-1.8897	-1.6665	-0.2231	-10.8459	0.000000000000000
0.15868	0.0206	-1.8409	-1.6665	-0.1743	-8.4732	0.0000000000000000000000000000000000000
0.16624	0.0206	-1.7943	-1.6665	-0.1278	-6.2110	0.0000000026323
0.17380	0.0206	-1.7499	-1.6665	-0.0833	-4.0494	0.00002567345797
0.18136	0.0206	-1.7073	-1.6665	-0.0407	-1.9799	0.02385927961141

Appendix-C.6.Four Damage States Probability of Exceeding on Spectral Displacement Longitudinal Direction due to Target Displacement in Transverse Direction by POA