BAB I. PENDAHULUAN

1.1 Latar Belakang

Semikonduktor seperti TiO₂, ZnO, Fe₂O₃, CdS, CdO dan ZnS telah terbukti mampu berperan sebagai fotokatalis untuk mendegradasi polutan organik dalam air. Diantara semikonduktor tersebut, ZnO lebih banyak diminati karena sifatnya yang menarik seperti sulit teroksidasi, tidak beracun dan memiliki energi *gap* tinggi (Eg = 3,2 – 4,0 eV)¹. Namun, energi *gap* yang tinggi menyebabkan material ini menyerap baik di daerah sinar UV, tapi tidak efektif di daerah sinar tampak². Oleh karena itu, berbagai metode telah dilakukan agar ZnO dapat menyerap dengan baik di daerah sinar tampak. Salah satu metode yang sering digunakan adalah pendopingan dengan logam transisi dan oksida logam dengan meningkatkan kemampuan fotokatalisis ZnO dengan mempengaruhi pergesaran penyerapan optik, meningkatkan cacat permukaan, serta produksi oksigen pada permukaan¹. Salah satu upaya yang dilakukan yaitu ZnO didoping dengan material spinel ferit (MFe₂O₄)³.

Studi mengenai spinel ferit telah memperoleh banyak perhatian dan menjadi studi yang sangat penting dalam beberapa tahun terakhir karena sifat elektronik dan magnetiknya yang signifikan dalam bidang teknologi teknologi. Aplikasi spinel ferit cukup luas yaitu dalam media recording, ferrofluids untuk penyimpanan dan pengambilan informasi, peningkatan kualitas Magnetic Resonance Imaging (MRI), katalis, dan drug delivery⁴. Pada umumnya spinel ferit terdiri dari tiga jenis yaitu, spinel normal, terbalik dan campuran. Spinel ferit terbalik seperti NiFe₂O₄ lebih menarik perhatian peneliti karena anisotropi nanokristalin besar dan magnetic saturationnya tinggi⁵. Material NiFe₂O₄ memiliki energi gap sekitar 1,53 eV yang lebih kecil dibandingkan ZnO². Kombinasi antara ZnO dan NiFe₂O₄ membentuk fotokatalis semikonduktor yang meningkatkan aktivitasnya di bawah cahaya tampak (visible light)⁶, serta NiFe₂O₄ dan ZnO yang bersifat feromagnetik dan diamagnetik menghasilkan material yang bersifat superparamagnetik. Sifat superparamagnetik dari material ZnO-NiFe₂O₄ memudahkan pemisahan nanopartikel ini dari cairan dalam pengolahan air limbah dan degradasi zat warna¹.

Berbagai metode telah dilakukan dalam mensintesis partikel spinel ferit, antara lain proses sonokimia, teknik prekursor, *co-precipitation, mechanical alloying,* sol-gel, pirolisis-polimer, *combustion reaction,* hidrotermal⁵, dan sol-gel *autcombustion*⁴. Metode hidrotermal mendapat banyak perhatian⁷, karena memiliki beberapa kelebihan seperti perlakuan suhu rendah, kontrol stoikiometri yang tepat, dan mudah dikontrol serta material dihasilkan lebih homogen dan murni⁸.

Akhir-akhir ini, banyak variasi telah dilakukan untuk mensintesis material NiFe₂O₄ secara hidrotermal, seperti sintesis nanokristalin NiFe₂O₄ menggunakan CTAB sebagai surfaktan dan NH₃ dan NaOH sebagai *hydrolyzing agent*. Namun, kondisi ini melibatkan lingkungan sintesis yang dikontrol secara ketat, penggunaan reagen yang rumit dan mahal. Oleh karena itu diperlukan kondisi yang sederhana dan hemat biaya melalui proses hidrotermal untuk sintesis nanopartikel spinel ferit dengan pemanfaatan pekursor yang murah, tidak beracun dan ramah lingkungan⁷.

Green synthesis adalah metode yang diminati peneliti, karena tidak menggunakan bahan kimia yang berbahaya dan beracun. Metode ini menggunakan ekstrak tumbuhan dan bahan alam lainnya dalam sintesis kimia. Bahan alam yang telah digunakan untuk mensintesis material ferit antara lain, bawang merah⁹, lidah buaya¹⁰, rosella¹¹, madu¹², merunggai¹³, *urtica*⁵, *okra*¹⁴, maja¹⁵ dan *Hdyrangea paniculata*¹⁶.

Buah rambutan berasal dari Asia Tenggara yang saat ini juga dikenal sebagai *Achotillo*, leci berbulu, *MamónChino* dan *Shao-Zi* di berbagai belahan dunia. Komposisi utama kulit Rambutan, terdiri dari antosianin, ellagitanin, asam ellagat, corilagin, geraniin, *syringic acid* dan *p-coumaric acid* sebagai sumber antioksidan alami¹⁷. Uji fitokimia menunjukkan bahwa kulit rambutan mengandung senyawa metabolit sekunder jenis fenolik yang mampu berperan sebagai *reducing, capping, ligation, chelating, stabilization agents* pada sintesis material¹⁸. Sampai saat ini, belum ada laporan mengenai sintesis material ZnO-NiFe₂O₄ yang menggunakan ekstrak kulit rambutan secara hidrotermal dan uji aktivitasnya sebagai fotokatalis polutan organik dan zat antibakteri. Oleh karena itu, pada penelitian ini dilakukan sintesis material ZnO-NiFe₂O₄ secara hidrotermal dengan menggunakan ekstrak kulit rambutan dan uji aktivitas material ZnO-NiFe₂O₄ sebagai fotokatalis polutan organik dan zat antibakteri serta kemudian dikarakterisasi menggunakan XRD, FT-IR, DRS UV-Vis, SEM, VSM, yang tujuannya untuk mengetahui struktur dan ukuran kristal, interaksi dalam senyawa, energi *gap*, morfologi, dan sifat magnetik.

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas, dapat dirumuskan suatu permasalahan bahwa :

1. Bagaimana pengaruh ekstrak kulit rambutan pada sintesis material NiFe₂O₄ dan ZnO didoping NiFe₂O₄ secara hidrotermal?

- 2. Bagaimana struktur, niai energi gap, morfologi dan sifat magnet dari material ZnO-NiFe₂O₄ yang dihasilkan?
- 3. Bagaimana aktivitas material ZnO-NiFe₂O₄ sebagai fotokatalis terhadap polutan organik dan aktivitas antibakterinya ?

1.3 Tujuan Penelitian

Penelitian ini bertujuan untuk:

- 1. Menganalisis pengaruh ekstrak kulit rambutan pada sintesis material NiFe₂O₄ dan ZnO didoping NiFe₂O₄ secara hidrotermal
- 2. Menganalisis sifat material ZnO-NiFe₂O₄ dengan mengkarakterisasi menggunakan XRD, FT-IR, DRS UV-Vis, SEM dan VSM.
- 3. Menguji aktivitas material ZnO-NiFe₂O₄ sebagai fotokatalis polutan organik dan zat antibakteri.

1.4 Manfaat Penelitian

Hasil peneitian ini dapat bermanfaat dalam bidang ilmu kimia material khususnya kimia anorganik mengenai sumber pengetahuan tentang sintesis nanopartikel ZnO-NiFe₂O₄ secara hidrotermal dengan menggunakan ekstrak kulit rambutan serta uji aktivitasnya sebagai fotokatalis polutan organik dan zat antibakteri.