DAFTAR PUSTAKA

Boccaccini AR, M Erol, WJ Stark, D Mhon, Z Hong, JF mano, 2011, Polymer/bioactive glassnanocomposite for biomedical application, 70, 1764-1776.

Damen JJM, Ten Cate, 1992, Silica-induced Precipitation of Calcium Phosphate in the Presence of Inhibitors of Hydroxyapatite Formation

De Campos DDP, Bertran CA, 2009, Synthesis of carbonated hydroxyapatite nanorods in liquid crystals. Chemistry Institute, University of Campinas, P.O. Box 6154, Campinas - SP, Brazil.

Department of research and development, sigmaGraft, Brea, CA, USA, 2013, Effect of thermal treatment of the hydroxyapatite powder on the micropore and microstructure of porous biphasic calcium phosphate composite granules, Journal of biomaterials and nano biotechnology, 4, 114-118.

Dorozhkin SV, 2013, Calcium Orthophosphate-Based Bioceramics, Materials, 6, 3840-3942.

Farid A, PO Vassiliev and L Bergstrom, Hierarchically porous ceramics from diatomite powders by pulsed current processing, 2009, 92, 2, 338-343.

Ghanaati S, Samuel. EU, Mike B, Ines W, Oliver K, Robert AS and C James K, 2013, Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation, Head and Face Medicine, 9, 1, 1-7.

Gomes Vega. JM, E Saiz, AP. Tomsia, G.W marshall, SJ. Marshall, 2000, Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-Based Implants, 1. Processing, , Biomaterial, 21, 105-111.

Hallman M and Andreas Thour, 2000, Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry, Periodontology, 47, 172-192.

Hong Li, P Hrma, JD Vienna, M Qian, Y Su, DE Smith, 2003, Effects of Al2O3, B2O3, Na2O and SiO2 on nepheline formation in borosilicate glasses: chemical and physical correlations, 331, 202-216.

Itatani Kiyoshi, Kenta Tsuchiya, Yoshio Sakka, Ian J Davies, Seilero Koda, 2011, Superplastic deformation of Hydroxyapatite ceramics with B2O3 or Na2O addition fabricated by pulse current pressure sintering Journal of the European Ceramic Society .31 2641-2648.,

Joo HL., Hong-Jun C, Seong YY, Byung KH and Hong CP, 2013, Processing of porous hydroxyapatite scaffolds containing calcium phosphate glass ceramics for bone tissue engineering, Journal of ceramics processing research, 14, 4, 544-548.

Lee KH, SH hee, 2009, The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2-CaO nanocomposite, Biomaterials, 30, 3444-3449.

Oktar . FN, simeon A, L S. Ozyegin, O. Gunduz, N. Demirkol, Y. Bozkurt, Serdar S, 2007, Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2, J Mater Sci: Mater Medicine,

Orlovski.VS, VS Komlev and SM Borian, 2002, Hidroksiapatite and Hidroksiapatite-Based Ceramics, pp 1139-1172

Qianli H, X yang, R Zhang, X Liu, Z Shen, Q Feng, 2015, Enhanced hydrophilicity and in vitro bioactivity of porous TiO2 film through the incorporation of boron, Science direct, 4, 4452-4459.

Ramakrishna S, J Mayer, E Wintermannet, Kam E Leong, 2001, Biomedical applications of polymer-composite materials, Composites science and technology, 61, 1189-1224.

Sara Bogya, E , Reka Barabas, Alexandra C, Valentina Dejeu and Ioan baldea, 2009, Hydroxyapatite modified with silica used sorption of cooper (II), Chemical Paper (63, 5, 568-573)

Sharon K.J.U and Nazmin S, 2010, Contact angle, Conductivity and Mechanical properties of Polycaprolactone/hydroxyapatite/polypyrrole scaffolds using freeze-drying technique, ARPN, 11, 13686-13691.

Sopyan, Ahmad Fadli, Maizran W, 2011, Effect of hydroxyapatite and tricalcium phosphate addition on protein foaming-consolidation porous alumina, J Porous mater, 10,.

Tham. WH, Mat Uzir wahit, M. rafiq Abdul Kadir and Tuck Whye Wong, 2013, Mechanical and thermal properties of biodegradable hydroxyapatite/poly(sorbitol sebacate malate) composites, SJST, 35, 1, 57-61.

Umami. G.D, Aminatun, Dwi Winarni, 2014, Sintesis dan karakterisasi biokompatibilitas Si-Ca\textsubscript{10}(PO\textsubscript{4})\textsubscript{6}2(OH)\textsubscript{2} dengan metode hydrothermal untuk aplikasi bone filler, Jurnal fisika dan terapannya, 2, 1, 106-117.

