BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan tentang karakteristik I-V komposit semikonduktor SnO_2 dan TiO_2 sebagai sensor gas hidrogen, dapat disimpulkan bahwa:

- 1. Sensor mampu membedakan kondisi dilingkungan udara dengan lingkungan hidrogen, dengan arus tertnggi di lingkungan hidrogen adalah 3,76 mA dan arus tetinggi di lingkungan udara 1,83 mA.
- 2. Nilai sensitivitas tertinggi diperoleh pada sampel 30% TiO₂+ 70% SnO₂ sebesar 5,58 dengan tegangan operasional 27 volt pada suhu kamar.
- 3. Konduktivitas lingkungan hidrogen lebih tinggi dibandingkan lingkungan udara. Konduktivitas tertinggi di lingkungan udara $2,09 \times 10^{-2}/\Omega$.m dan lingkungan hidrogen adalah $6,34 \times 10^{-2}/\Omega$.m.
- 4. Waktu respon sampel 30% TiO₂+ 70% SnO₂ adalah 42 detik pada tegangan 27 V.

KEDJAJAAN

5. Hasil XRD menunjukan terbentuknya senyawa baru Sn_2TiO_4 dan ukuran sampel 30% TiO_2+ 70% SnO_2 yaitu 141,64 nm lebih kecil dibandingkan dengan 100% SnO_2 dan TiO_2 murni yaitu 149,101 nm dan 159,25 nm.

5.2 Saran

Pada penelitian ini masih terdapat kekurangan yang perlu diperbaiki untuk penelitian selanjutnya. Oleh sebab itu disarankan untuk penelitian selanjutnya:

- Perlu diperhatikan tekanan yang diberikan saat pencetakan sampel.
- 2. Dilakukan percobaan dengan gas hidrogen dengan komposisi ppm

