SINTESIS SENYAWA AURIVILLIUS LAPIS EMPAT CaBi₄₋ _xLa_xTi₄O₁₅ DENGAN MENGGUNAKAN METODE LELEHAN GARAM

SKRIPSI SARJANA KIMIA

Oleh : RINI RAMADHANI 1310412016

PEMBIMBING I : Dr. Zulhadjri, M. Eng PEMBIMBING II : Dr. Eng Yulia Eka Putri

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS PADANG 2017

ABSTRACT

SYNTHESIS OF FOUR-LAYERED CaBi_{4-x}La_xTi₄O₁₅ AURIVILLIUS COMPOUND BY MOLTEN SALT METHOD

By :

Rini Ramadhani (1310412016)

Dr. Zulhadjri, M.Eng and Dr. Eng. Yulia Eka Putri

Aurivillius phase is a type of metal oxide compound with general formula [Bi₂O₂]²⁺ $[A_{n-1}B_nO_{3n+1}]^2$ consisting of perovskite layer and bismuth layer in a single phase. Aurivillis phase with formula CaBi₄Ti₄O₁₅ has ferroelectric properties and very potensial to be developed as reference in the advance material for data-storage. The modification of four layers CaBi_{4-x}La_xTi₄O₁₅ (x = 0; 0.5; 1.0; 1.5 and 2.0) Aurivillius phase was synthesized using molten salt method. Precursors were weighted stoichiometically and grinded homogeneously with the eutectic mixture of Na₂SO₄/K₂SO₄ salts. The mixture of precursors and salts were heated at temperatures of 750 °C and 850 °C for 10 h and 950 °C for 5 h. The products were then characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRD data were refined by Rietica program with Le Bail method. Refinement results revealed the formation of four layers CaBi_{4-x}La_xTi₄O₁₅ for all compositions. The single phase of Aurivillius with A21am space group was shown by the $x \leq 1.5$. The orthorhombic of the single phase of Aurivillius decrease as the increasing of La³⁺ concentration in the sample. The surface analysis by SEM showed that the surface was plate-like in accordance with the unique feature of Aurivillius phase. Raman spectroscopic measurements show a peak shift for each addition of La³⁺ variation. Measurement of dielectric properties at room temperature shows an increase in dielectric constant value with an increase of La^{3+} to x = 1.0.

Keywords: Aurivillius phase, molten salts, ferroelectric, Le Bail method.