## **BAB I. PENDAHULUAN**

## 1.1 Latar Belakang

Senyawa ferit dengan rumus molekul MFe<sub>2</sub>O<sub>4</sub> dimana M adalah logam transisi atau alkali tanah merupakan material semikonduktor yang bersifat magnet dengan struktur spinel. Senyawa-senyawa tersebut telah menarik perhatian para peneliti dan dunia industri akhir-akhir ini karena aplikasinya yang sangat potensial sebagai penyimpan data, biosensor, *drug delivery*, diagnosis penyakit, sensor gas, *elektronic devices*, konversi energi, katalisator, magnetik fluid, dan pemisahan secara magnetik<sup>1</sup>.

Dalam dekade terakhir, sintesis spinel nanopartikel magnetik telah dikembangkan secara intensif dengan menggunakan berbagai macam metode antara lain, sintesis NiFe<sub>2</sub>O<sub>4</sub> dengan metode pembakaran<sup>2</sup>, CoFe<sub>2</sub>O<sub>4</sub> dengan metode solvothermal<sup>3</sup>, MnFe<sub>2</sub>O<sub>4</sub> dengan metode sol-gel<sup>4</sup>, ZnFe<sub>2</sub>O<sub>4</sub> dengan metode hidrotermal<sup>5</sup>, MgFe<sub>2</sub>O<sub>4</sub> dengan metode solid-state reaction<sup>6</sup>, dan CuFe<sub>2</sub>O<sub>4</sub> dengan metode kalsinasi<sup>7</sup>. Akan tetapi, pertumbuhan dan ukuran partikel sulit dikontrol sehingga berdampak terhadap sifat material tersebut. Selain itu, metode-metode kimia ini memberi efek yang negatif terhadap lingkungan<sup>8</sup>.

Green Synthesis adalah sebuah metode dalam pembuatan berbagai material anorganik termasuk spinel ferit MFe<sub>2</sub>O<sub>4</sub> yang menggunakan bahanbahan yang tidak membahayakan terhadap peneliti dan lingkungan. Metodemetode yang telah digunakan dalam green synthesis seperti : microwave combustion dan conventional combustion method, metode hidrotermal, metode sol gel, dan presipitasi<sup>9</sup>. Metode green synthesis ini lebih ramah lingkungan karena menggunakan bahan alam sehingga mengurangi polutan dan tidak menimbulkan efek bahaya bagi peneliti yang menggunakannya. Ekstrak bahan alam digunakan dalam metode green synthesis berfungsi sebagai capping agent untuk menstabilkan struktur nano. Ekstrak bahan alam yang digunakan merupakan bahan alternatif ramah lingkungan, mudah didapat, ekonomis, dan tidak beracun. Material magnetik yang dihasilkan dengan metode green synthesis memiliki ukuran partikel yang lebih kecil, struktur yang halus, stabil, dan homogen<sup>10</sup>. Bahan alam yang telah digunakan dalam green synthesis

sebagai *capping agent* antara lain, ekstrak aloe vera<sup>11</sup>, kulit rambutan<sup>12</sup>, eukaliptus lemon<sup>13</sup>, bawang merah, bawang putih, bawang bombay<sup>14</sup>, ranti<sup>15</sup>, mimba<sup>16</sup> dan kembang sepatu<sup>17</sup>.

Dalam penelitian ini, dilakukan sintesis material magnetik NiFe<sub>2</sub>O<sub>4</sub> dengan metode hidrotermal yang merupakan salah satu metode green synthesis menggunakan ekstrak kembang sepatu. NiFe<sub>2</sub>O<sub>4</sub> menarik perhatian karena sifat magnetnya yang dominan. Dalam sintesis digunakan ekstrak kembang sepatu sebagai penstabil struktur nano. Ekstrak kembang sepatu mengandung bahan biokimia seperti taraxeol asetat, β-sitosterol, campasterol, stigmasterol, kolesterol, ergosterol, lipid, asam sitrat, asam tartarat, asam ok<mark>salat, fruktosa, s</mark>ukrosa, flavonoid, dan flavonoid glikosida yang salah satunya berfungsi sebagai penstabil struktur nano. Kelebihan ekstrak k<mark>emba</mark>ng se<mark>patu adalah r</mark>amah ling<mark>kunga</mark>n, ekonomis<sup>18</sup>, mudah didapat, dan persiapan ek<mark>straknya mud</mark>ah<sup>19</sup>. Materi<mark>al m</mark>agnetik yang dihasilkan dikarakterisasi dengan menggunakan peralatan seperti XRD, TEM, VSM, DRS UV Vis, dan FT-IR untuk menganalisis struktur dan ukuran kristal, morfologi, sifat magnet, sifat optik, dan interaksinya. Material yang dihasilkan diaplikasikan dalam proses fot<mark>okataliktik yaitu deg</mark>radasi zat warna *direct yellow* 27 dan limbah zat warna batik di bawah sinar matahari.

#### 1.2. Rumusan Masalah

- Bagaimana pengaruh penggunaan ekstrak kembang sepatu dalam sintesis NiFe<sub>2</sub>O<sub>4</sub> secara hidrotermal yang merupakan salah satu metode green synthesis.
- 2. Bagaimana sifat material magnetik NiFe<sub>2</sub>O<sub>4</sub> yang dihasilkan.
- Bagaimana aktivitas fotokatalitik material magnetik NiFe<sub>2</sub>O<sub>4</sub> dalam mendegradasi zat warna direct yellow 27 dan limbah zat warna batik di bawah sinar matahari.

# 1.3. Tujuan Penelitian

Penelitian ini bertujuan untuk:

1. Sintesis material magnetik NiFe<sub>2</sub>O<sub>4</sub> melalui metode hidrotermal dengan menggunakan ekstrak kembang sepatu.

- Karakterisasi material magnetik yang didapatkan menggunakan XRD, TEM, VSM, FT-IR, dan DRS UV-Vis.
- 3. Uji aktivitas fotokatalitik NiFe<sub>2</sub>O<sub>4</sub> dalam mendegradasi zat warna *direct yellow* 27 dan limbah zat warna batik di bawah sinar matahari.

# 1.4 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan informasi tentang pembuatan NiFe<sub>2</sub>O<sub>4</sub> berbasis *green synthesis*. Material yang dihasilkan diharapkan dapat diaplikasikan untuk mengatasi masalah pencemaran lingkungan yang disebabkan oleh senyawa-senyawa organik berbahaya dengan bantuan sinar matahari. Selain itu, sifat magnet yang dimiliki oleh senyawa hasil sintesis menjadikannya sebagai fotokatalis yang efisien dalam pemisahannya dengan memanfaatkan magnet eksternal.

