BAB IV
PENUTUP

4.1 Kesimpulan

1. Untuk sistem (1.1.1) dengan E dan B diberikan oleh (3.0.1) dan (3.0.2) dimana $\text{rank}(B_2) = (n - r)$ dan $A \in \mathbb{R}^{n \times n}_+$, terdapat matriks $K \in \mathbb{R}^{m \times n}$ sedemikian sehingga $\det(E + BK) \neq 0$ dan sistem (1.1.4) adalah positif jika

 a) $(B_2B_2^T)^{-1} \in \mathbb{R}^{(n-r) \times (n-r)}_+$;

 b) $B_1B_2^T \in \mathbb{R}^{r \times (n-r)}_+;

 c) (B_2B_2^T)^{-1}B_2 \in \mathbb{R}^{(n-r) \times m}_+;

 d) B_1 - B_1B_2^T(B_2B_2^T)^{-1}B_2 \in \mathbb{R}^{r \times m}_+.$

2. Selain itu, jika $A \in \mathbb{R}^{n \times n}_+$ dan $[E \ B]$ ekuivalen positif dengan

\[
\begin{bmatrix}
I_r & E_{12} & B_{12} \\
0 & E_{22} & B_{22}
\end{bmatrix},
\]

maka terdapat matriks $K \in \mathbb{R}^{m \times n}$ sedemikian sehingga $\det(E + BK) \neq 0$ dan sistem (1.1.4) adalah positif jika

 a) $E_{12} + B_{12}B_{22}^T \in \mathbb{R}^{r \times (n-r)}_-$;

 b) $(E_{22} + B_{22}B_{22}^T)^{-1} \in \mathbb{R}^{(n-r) \times (n-r)}_+.$