ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF POROUS N-DOPED TiO₂ THIN FILM BY PEROXO SOL-GEL METHOD AS SELF CLEANING MATERIAL APLICATION

by:

Nurul Pratiwi (1210412020)

Dr. Diana Vanda Wellia, M.Si dan Dr. Eng. Yulia Eka Putri

The photocatalytic properties of TiO₂ on a surface of a material give an ability of the surface that being cleaned without any manual activity, called self cleaning material. The photocatalytic properties of TiO₂ compound in anatase phase can be activated under visible light by nitrogen doping and its ability can be increased by modifying the surface of TiO₂ thin film with generated porous structure using polietilen glikol (PEG). The porous N-doped TiO₂ thin films were prepared by heating aqueous peroxotitanate thin films by addition of polietilen glikol (PEG) deposited uniformly on superhydrophilic uncoated glass at 500 °C for 1 h. The result of X-ray diffraction (XRD) characterization revealed that the phase of all synthesized porous N-doped TiO₂ were anatase. The UV-Vis spectroscopy showed the synthesized porous N-doped TiO₂ thin films exhibit the absorption in the visible range (400-500 nm). Photocatalytic activity of porous N-doped TiO₂ thin films were evaluated by using fourier transform-infrared spectroscopy (FTIR) to determine the ability of this photocatalyst for stearic acid degradation under visible light irradiation. The result showed that N-TiO₂/PEG-2.1 thin film degraded the stearic acid was about 87,86%, which was 1,12 times higher than that of N-doped TiO₂ and 9,9 times higher than that of undoped TiO₂ thin film.

Keyword : anatase, porous, photocatalyst, self-cleaning, superhydrophilic