BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan, dapat disimpulkan bahwa keramik lantai yang telah dimodifikasi dengan melakukan pelapisan sol titania yang diaktivasi KOH pada suhu 250°C dan 300°C dapat dijadikan sebagai elektroda superkapasitor. Aktivasi KOH pada template keramik lantai mempengaruhi performance superkapasitor dimana karbon meningkat menjadi 45,07% dan titanium sebesar 2,06%. Elektroda dengan suhu pembakaran 300°C memiliki kapasitansi 42 kali lebih besar dari pada elektroda dengan suhu pembakaran 250°C. Nilai kapasitansi tertinggi terdapat pada elektroda keramik dilapisi sol titania yang diaktivasi KOH pada suhu pembakaran 300°C dengan konsentrasi elektrolit H₃PO₄ 0,5 M sebesar 9699 nF dan mampu menghasilkan tegangan sebesar 0,51 Volt serta arus sebesar 5,3 μA selama 30 menit waktu pengisian.

5.2 Saran

Disarankan untuk penelitian lebih lanjut dilakukan peningkatan suhu pembakaran sampai 400°C, pengulangan coating, aktivasi dengan aktivasi fisika dan penambahan material konduktor lainnya seperti penambahan karbon aktif pada permukaan keramik lantai untuk meningkatkan kapasitansi dari elektroda keramik dilapisi titania yang diaktivasi.

KEDJAJAAN