BAB IV

PENUTUP

4.1 Kesimpulan

Berdasarkan hasil analisis dan pembahasan yang telah dilakukan, maka dapat disimpulkan bahwa $_{\rm UNIVERSITAS\,ANDALAS}$

1. Model *prey-predator* dengan mempertimbangkan *predator* terinfeksi adalah

$$\frac{dX}{dt} = rX\left(1 - \frac{X}{K}\right) - \frac{aXY}{b+X} - \frac{cXZ}{b+X},$$

$$\frac{dY}{dt} = \frac{dXY}{b+X} + \frac{eXZ}{b+X} - \beta YZ - \mu Y,$$

$$\frac{dZ}{dt} = \beta YZ - \mu Z - \gamma Z.$$

Model tersebut kemudian dikembangkan dengan menambahkan perlakuan pengobatan (α) menjadi κ Ε D J A J A A N BANGS

$$\begin{split} \frac{dX}{dt} &= rX\left(1 - \frac{X}{K}\right) - \frac{aXY}{b + X} - \frac{cXZ}{b + X},\\ \frac{dY}{dt} &= \frac{dXY}{b + X} + \frac{eXZ}{b + X} - \beta YZ - \mu Y + \alpha Z,\\ \frac{dZ}{dt} &= \beta YZ - \mu Z - \gamma Z - \alpha Z. \end{split}$$

- 2. Terdapat 4 titik ekuilibrium untuk model pertama, yaitu:
 - $E_1 = (0, 0, 0)$ yang bersifat tidak stabil.
 - $E_2=(K,0,0)$ yang bersifat stabil asimtotik jika memenuhi $\frac{dK}{b+K}-\mu<0.$

•
$$E_3 = \left(\frac{b\mu}{d-\mu}, \frac{bdr(dK - K\mu - b\mu)(b + X^*)}{aK(d-\mu)^2}, 0\right)$$
 yang bersifat stabil jika $\beta Y - \mu - \gamma < 0$ dan $\frac{r}{K} - \frac{aY}{(b+X)^2} > 0$.

•
$$E_4 = \left(\hat{X}, \frac{\mu + \gamma}{\beta}, \frac{r\beta(K - \hat{X})(b + \hat{X}) - aK(\mu + \gamma)}{cK\beta}\right)$$
. Titik ekuilibrium E_4 bersifat stabil jika memenuhi $\frac{2r\hat{X}}{K} > r - \frac{(ab\hat{Y} + bc\hat{Z})}{(b + \hat{X})^2}$ dan $\frac{d\hat{X}}{b + \hat{X}} < \lambda \hat{Z} + \mu$.

Model kedua juga memiliki 4 titik ekuilibrium, yaitu:

- $E_1 = (0, 0, 0)$ yang bersifat tidak stabil.
- $E_2=(K,0,0)$ yang bersifat stabil asimtotik jika memenuhi $\frac{dK}{b+K}-\mu<0.$
- $E_3 = \left(\frac{b\mu}{d-\mu}, \frac{bdr(dK K\mu b\mu)(b + X^*)}{aK(d-\mu)^2}, 0\right)$ yang bersifat stabil jika $\beta Y \mu \gamma \alpha < 0$ dan $\frac{r}{K} \frac{aY}{(b+X)^2} > 0$.
- $E_4 = \left(\bar{X}, \frac{\mu + \gamma + \alpha}{\beta}, \frac{r\beta(K \bar{X})(b + \bar{X}) aK(\mu + \gamma + \alpha)}{cK\beta}\right)$. Titik ekuilibrium E_4 bersifat stabil jika memenuhi $\frac{2r\bar{X}}{K} > r \frac{(ab\bar{Y} + bc\bar{Z})}{(b + \bar{X})^2}$ dan $\frac{d\bar{X}}{b + \bar{X}} < \lambda \bar{Z} + \mu$.
- 3. Hasil numerik dari kedua model dengan nilai parameter yang diberikan menunjukkan bahwa model pertama stabil pada titik ekuilibrium E4 = (599.709, 0.2, 5.5996), sedangkan model kedua stabil pada $E_4 = (583.8781, 10.2, 303.5789)$ untuk $\alpha = 0.1$ dan pada titik $E_4 = (378.7205, 90.2, 2703.3)$ untuk $\alpha = 0.9$. Selain itu, dapat disimpulkan bahwa pemberian pengobatan pada *predator* terinfeksi dapat memperlambat pertumbuhan populasi *predator* terinfeksi dan

meningkatkan jumlah populasi predator sehat.

4.2 Saran

Adapun saran yang dapat diberikan untuk penelitian selanjutnya adalah peneliti dapat mengembangkan model yang telah dibahas dengan menambahkan predator baru yang saling berkompetisi dengan predator lainnya.

